

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			_
Forename(s)			
Candidate signature			

GCSE COMBINED SCIENCE: TRILOGY

Higher Tier Chemistry Paper 1H

Thursday 16 May 2019 Morning Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
TOTAL		

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

2 0 1 This question is about reactions of metals. Figure 1 shows what happens when calcium, copper, magnesium and zinc are added to hydrochloric acid. Figure 1 Calcium Copper Magnesium Zinc Hydrogen 0 0 0 0 0 1 . What is the order of decreasing reactivity of these four metals? 1 [1 mark] Tick (✓) one box. Zn Ca Cu Mg Ca Cu Mg Zn Cu Zn Ca Mg

Ca Mg Zn Cu

	A student wants to make a fair comparison of the reactivity of the metals with hydrochloric acid.	1
0 1.2	Name two variables that must be kept constant.	[2 marks]
	1	
	2	
0 1.3	What is the independent variable in this reaction?	[1 mark]
0 1.4	Predict the reactivity of beryllium compared with magnesium. Give a reason for your answer. Use the periodic table.	[2 marks]
	Reason	
0 1.5	A solution of hydrochloric acid contains 3.2 g of hydrogen chloride in 50 cm ³ Calculate the concentration of hydrogen chloride in g per dm ³	[3 marks]
	Concentration =	n ner dm ³

Do not write outside the box

0 2	This question is about salts.	
	Ammonium nitrate solution is produced when ammonia gas reacts with nitric acid.	
0 2.1	Give the state symbol for ammonium nitrate solution.	[1 mark]
		[many
0 2.2	What is the formula of nitric acid?	[4 mouls]
	Tick (✓) one box.	[1 mark]
	HCl	
	HNO ₃	
	H ₂ SO ₄	
	NH₄OH	
0 2.3	Ammonia gas dissolves in water to produce ammonia solution.	
	Ammonia solution contains hydroxide ions, OH ⁻	
	A student adds universal indicator to solutions of nitric acid and ammonia.	
	What colour is observed in each solution?	[2 marks]
	Colour in nitric acid	
	Colour in ammonia solution	

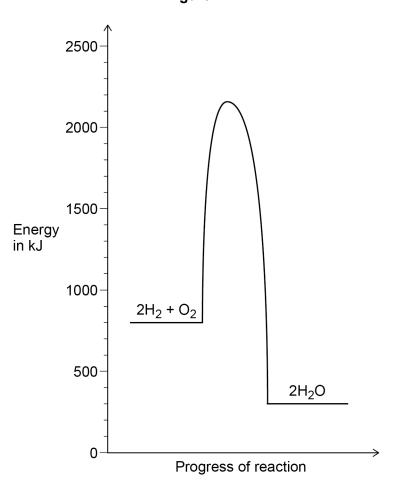
0 2.4	The student gradually added nitric acid to ammonia solution.			
	Which row, A , B , C or D , shows the change in pH as the nitric acid is added until in excess?			
	Tick (v	() one box.		[1 mark]
		pH of ammonia solution at start	pH after addition of excess nitric acid	
	A	10	7	
	В	2	10	
	С	7	1	
	D	10	2	
0 2.5	Relativ	ve atomic masses (A _r):	$H = 1$ $N = 14$ O $NH_4NO_3 = 80$	nonium nitrate (NH ₄ NO ₃). = 16 [3 marks] =%
Question 2 continues on the next page				

0 2.6	Describe a method to investigate how the temperature changes when different masses of ammonium nitrate are dissolved in water.	
	You do not need to write about safety precautions.	[6 marks]

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

Do not write outside the



- 0 3 This question is about oxygen.
- 0 3 . 1 Hydrogen reacts with oxygen.

$$2\,H_{2}\,(g)\,\,+\,\,O_{2}\,(g)\,\,\rightarrow\,\,2\,H_{2}O\,(g)$$

Figure 2 shows the relative energies of the reactants and products at a certain temperature.

Figure 2

Label the activation energy on Figure 2.

[1 mark]

0 3.2	Determine the overall energy change for the reaction between hydrogen and oxygen shown in Question 03.1
	Use Figure 2. [2 marks]
	Energy change =kJ

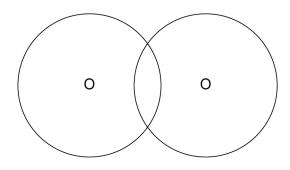

0 3 . **3** Oxygen is in Group 6 of the periodic table.

Figure 3 shows the outer energy levels in one molecule of oxygen (O_2) .

Draw the electrons in the outer energy levels in **Figure 3**.

[2 marks]

Figure 3

Question 3 continues on the next page

0 3.4 The equation shows the decomposition of hydrogen peroxide.

$$2 \text{ H-O-O-H} \rightarrow 2 \text{ H-O-H} + \text{ O=O}$$

Table 1 shows the bond energies.

Table 1

Bond	0-0	O=O	О–Н
Bond dissociation energy in kJ per mole	138	496	463

Calculate the overall energy change for the reaction.	[3 marks]
Energy change =	kJ

0 4	This question is about elements in the periodic table.	
0 4.1	What order did scientists use to arrange elements in early periodic tables?	[1 mark]
0 4 . 2	In the early periodic tables some elements were placed in the wrong groups.	
	Mendeleev overcame this in his periodic table.	
	Give one way Mendeleev did this.	[1 mark]
	Question 4 continues on the next page	

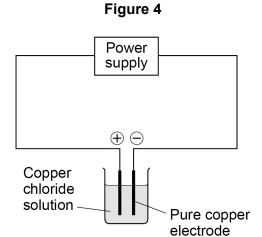
Table 2 shows the boiling points of fluorine, chlorine and bromine.

Table 2

Element	Boiling point in °C
Fluorine	-186
Chlorine	-34
Bromine	+59

0 4.3	Explain why the boiling points in Table 2 are low.	[2 marks]
0 4.4	Explain the trend in the boiling points in Table 2 .	[3 marks]

4.5	Explain why neon is unreactive.	
	Give the electronic structure of neon in your answer.	[2 marks]
4 . 6	How many atoms are there in 1 g of argon?	
	The Avogadro constant is 6.02×10^{23} per mole.	
	Relative atomic mass (A_r): Ar = 40	[2 marks]


Turn over for the next question

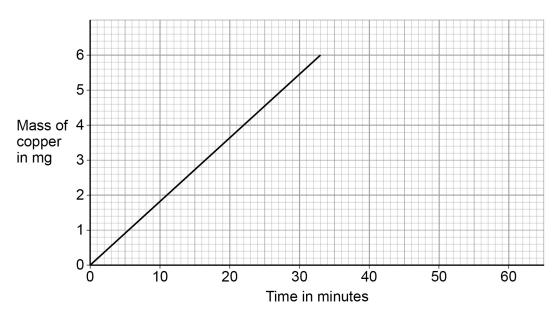
Number of atoms in 1 g = _____

0 5	This question is about electrolysis.	
0 5 . 1	Some metals are extracted from molten compounds using electrolysis.	
	Why is electrolysis used to extract some metals?	nark]
		iiui kj
0 5 . 2	Aluminium is produced by electrolysis of a molten mixture.	
	What two substances does the molten mixture contain?	orkol
	1	arks]
	2	
0 5.3	Copper and chlorine are produced when molten copper chloride is electrolysed.	
	Complete the half equation for the reaction at each electrode.	arks]
	<u></u>	ui Noj
	Half equation at negative electrode	
	Cu^{2+} \rightarrow	
	Half equation at positive electrode	
	$2 \text{ Cl}^- \rightarrow \underline{\hspace{1cm}}$	

Figure 4 shows the apparatus a student used to electrolyse copper chloride solution.

The student:

- measured the mass of copper deposited on the negative electrode after 60 minutes
- compared the mass deposited with the expected value.


0 5.4	Suggest two reasons why the mass deposited was different from the expected value. [2 marks]
	1
	2

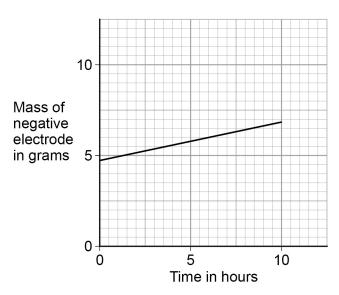
Question 5 continues on the next page

0 5.5 Figure 5 shows the expected mass of copper produced each minute.

Determine the expected mass of copper after 24 hours.

Use Figure 5 .	[3 marks]

Mass =



mg

Silver nitrate solution is electrolysed.

Figure 6 shows the change in mass of the negative electrode over 10 hours.

Figure 6

0 5 . 6	Determine the mass of the negative electrode at the start of the experiment.

Use Figure 6.

[1 mark]

0	5 .	7	Calculate the gradient of	the line in Figure 6

Give the unit.

[3 marks]

Gradient _____

Unit

0 6	This question is about sodium.
0 6.1	Sodium reacts with chlorine.
	What is the balanced equation for the reaction? [1 mark]
	Tick (✓) one box.
	Na + Cl → NaCl
	$Na + Cl_2 \rightarrow NaCl_2$
	2 Na + Cl ₂ \rightarrow 2 NaCl
	2 Na + Cl → Na ₂ Cl
0 6 . 2	Hot sodium is put in a gas jar of chlorine.
	Describe the observations made before, during and after the reaction. [3 marks]
	Before reaction
	During reaction
	After reaction

Do not write outside the box

0 6.3	Explain why sodium is less reactive than potassium.	[4 marks]
	Question 6 continues on the next page	

6.4	Chlorine reacts with sodium and with hydrogen.
	Compare the structure and bonding in sodium chloride and hydrogen chloride. [6 marks]

END OF QUESTIONS

Copyright © 2019 AQA and its licensors. All rights reserved.

2 0

IB/M/Jun19/8464/C/1H

14