

Please write clearly in	ו block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	

GCSE COMBINED SCIENCE: TRILOGY

	I	_

Higher Tier Chemistry Paper 1H

Thursday 14 May 2020

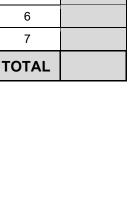
Morning

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).


Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

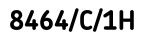
Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use

Mark

Question


1

2

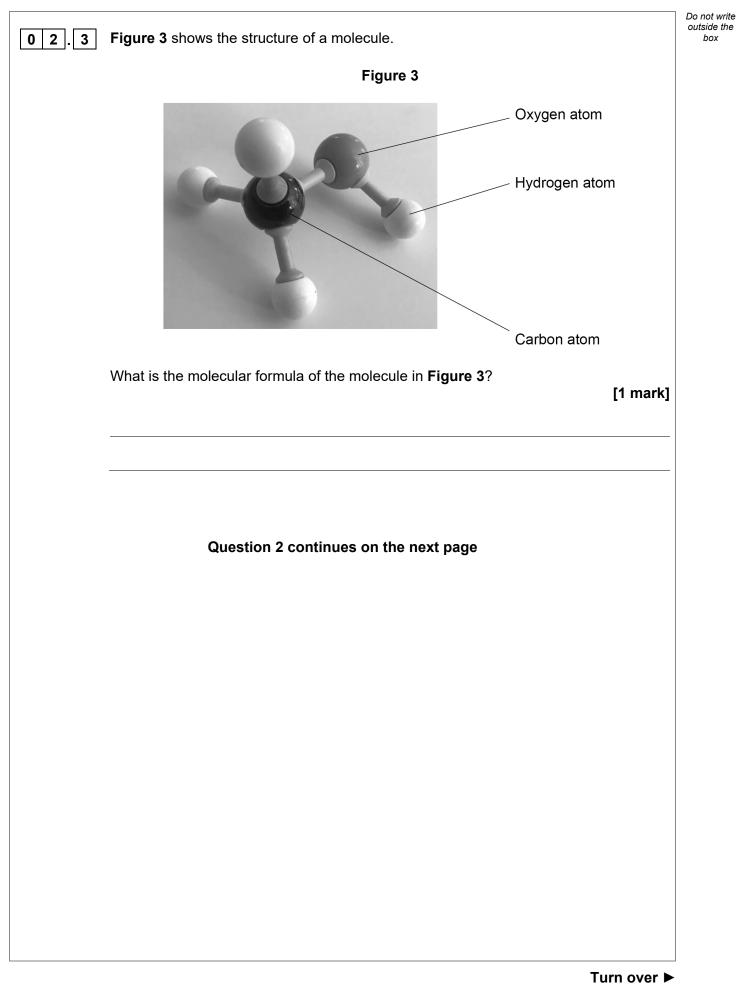
4

5

IB/M/Jun20/E9

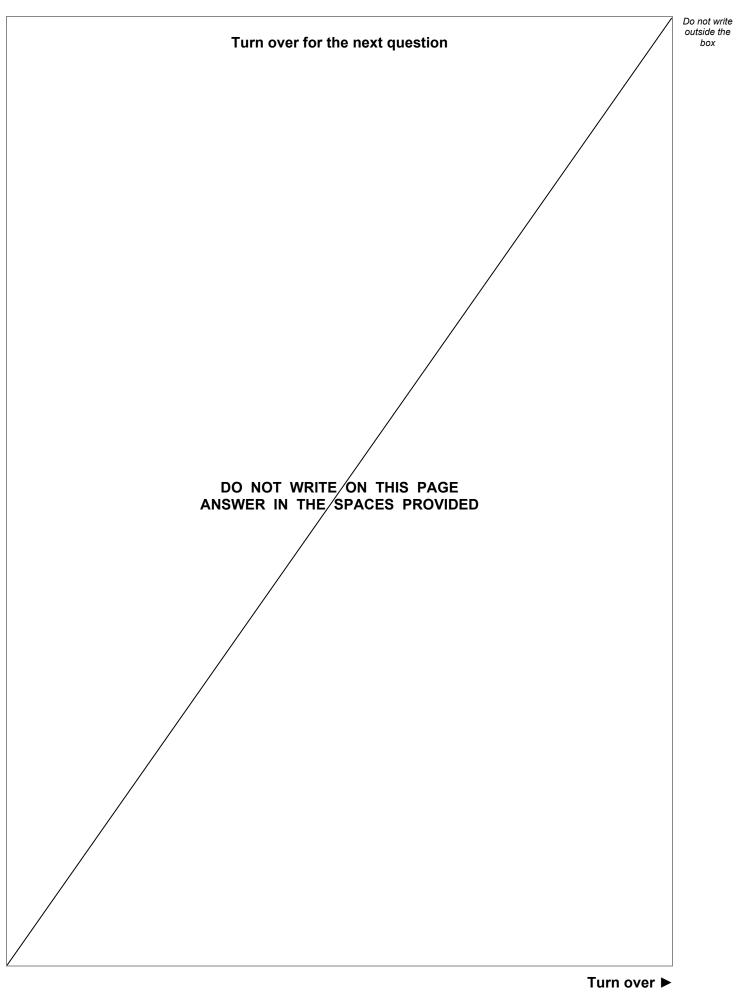
0 1	This question is about the extraction of aluminium.
0 1.1	An aluminium atom is represented as:
	²⁷ ₁₃ Al
	Give the number of electrons and neutrons in the aluminium atom. [2 marks]
	Number of electrons
	Number of neutrons
	Aluminium is extracted by the electrolysis of a molten mixture of aluminium oxide and cryolite.
	Figure 1 shows the cell used for the electrolysis.
	Figure 1
	Metal wire
	Negative electrode Molten mixture of aluminium oxide and cryolite
	Molten aluminium
0 1 . 2	Aluminium is produced by the reduction of aluminium oxide (Al_2O_3) .
	What is meant by the term reduction? [1 mark]

L


0 1.3	Oxygen is formed at the positive carbon electrodes.		Do not write outside the box
	Explain why the positive carbon electrodes must be continually replaced.	[3 marks]	
0 1.4	A substance conducts electricity because of free moving, charged particles.		
	What are the free moving, charged particles in a:		
	 carbon electrode (made from graphite) 		
	 molten mixture of aluminium oxide and cryolite 		
	metal wire?	[3 marks]	
	Carbon electrode (made from graphite)		
	Molten mixture of aluminium oxide and cryolite		
	Metal wire		9
	Turn over for the next question		

Turn over ►

	This quastien is shout substances with sourclast handing	Do not write outside the
0 2	This question is about substances with covalent bonding.	box
0 2 . 1	Figure 2 shows a ball and stick model of a water molecule (H_2O) .	
	Figure 2	
	Suggest one limitation of using a ball and stick model for a water molecule. [1 mark]	
02.2	Ice has a low melting point.	
	Water molecules in ice are held together by intermolecular forces.	
	Complete the sentence. [1 mark]	
	Ice has a low melting point because the	
	intermolecular forces are	



	Diamond has a giant covalent structure.	Do not write outside the box
02.4	What is the number of bonds formed by each carbon atom in diamond? Tick (✓) one box. 2 3 4 8	
02.5	Give two physical properties of diamond. [2 marks] 1 2	
02.6	Name two other substances with giant covalent structures. [2 marks]	
	2	8

Some students investigated the thermal decomposition of metal carbonates.

The word equation for the reaction is:

0 3

metal carbonate \rightarrow metal oxide + carbon dioxide

The students made the following hypothesis:

'When heated the same mass of any metal carbonate produces the same mass of carbon dioxide.'

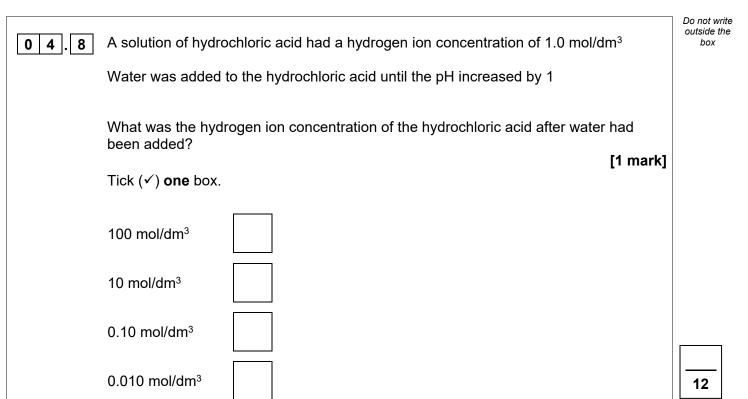
The students heated a test tube containing copper carbonate.

Table 1 shows their results.

Table 1

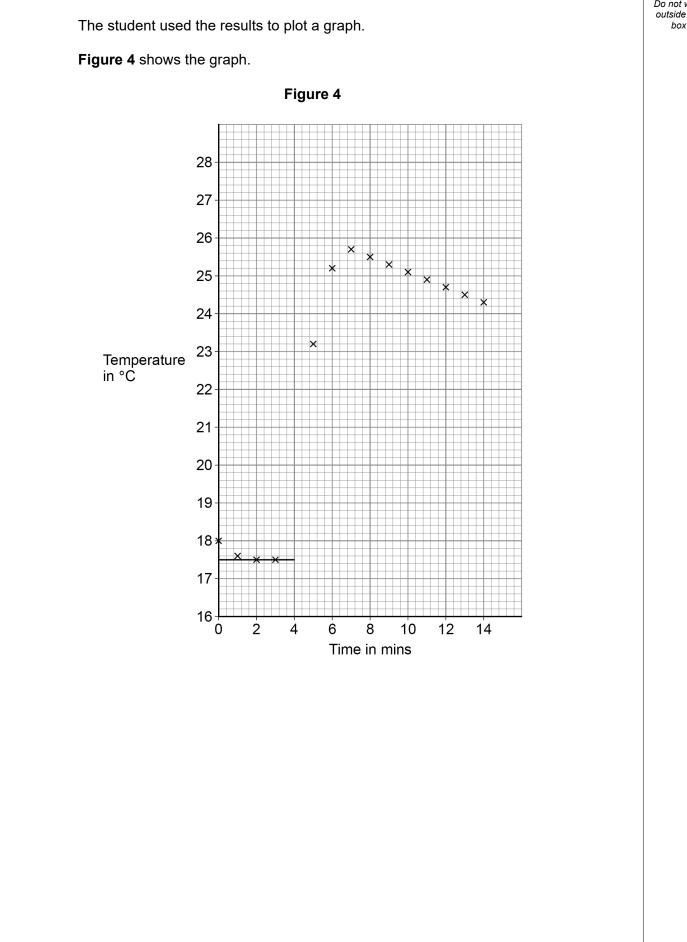
Time the test tube containing copper carbonate was heated in mins	0	2	4	6
Mass of test tube and contents in g	17.7	17.1	17.0	17.0

Plan a method the students could use to test their hypothesis.		Do not write outside the box
You should show how the students use their results to test the hypothesis.		box
You do not need to write about safety precautions.		
	[6 marks]	
		6
Turn over for the next question		

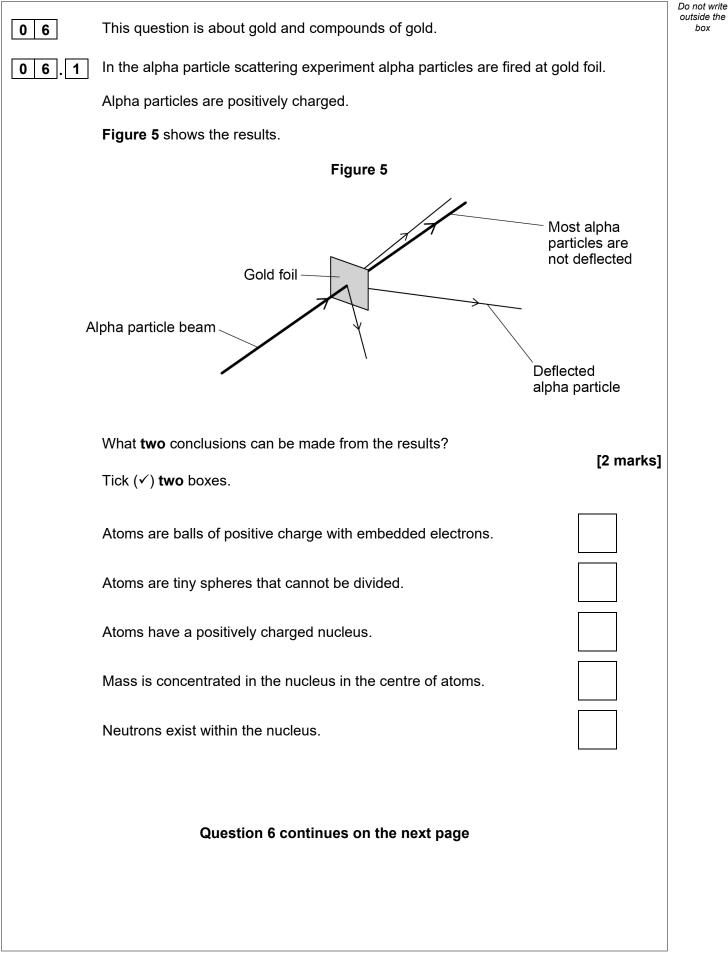

Turn over ►

		Do not write
0 4	This question is about acids, alkalis and bases.	outside the box
	A student reacted zinc oxide powder with hydrochloric acid to produce zinc chloride solution.	
04.1	Complete the equation for the reaction by writing the state symbols. [2 marks]	
ZnO	$(\) + 2 HCl(\) \rightarrow ZnCl_2(\) + H_2O(\)$	
04.2	Give one way that the student could speed up the reaction between zinc oxide powder and hydrochloric acid. [1 mark]	
	Hydrochloric acid was the limiting reactant.	
04.3	How could the student know when all the hydrochloric acid has reacted? [1 mark]	
04.4	How could the student obtain zinc chloride solution from the reaction mixture when all the hydrochloric acid has reacted? [1 mark]	

Describe how zinc chloride crystals are produced from zinc chloride solution	[2 marks]
Sulfuric acid and sodium hydroxide react to produce sodium sulfate.	
Sulfuric acid is gradually added to sodium hydroxide solution.	
The pH of the mixture changes as the sulfuric acid is added until in excess.	
Suggest the pH at:	
 the start before sulfuric acid is added 	
 the end when sulfuric acid is in excess. 	[2 marks]
pH at start =	
pH at end =	
Complete the symbol equation for the preparation of sodium sulfate.	
You should balance the equation.	[2 marks]
$_NaOH + H_2SO_4 → +$	
Question 4 continues on the next page	
	Sulfuric acid is gradually added to sodium hydroxide solution. The pH of the mixture changes as the sulfuric acid is added until in excess. Suggest the pH at: • the start before sulfuric acid is added • the end when sulfuric acid is in excess. pH at start = pH at end = Complete the symbol equation for the preparation of sodium sulfate. You should balance the equation. $NaOH + H_2SO_4 \rightarrow +$



		Do not w
0 5	A student investigated the temperature change when magnesium was added to copper sulfate solution.	outside box
	This is the method used.	
	1. Pour 30 cm ³ of copper sulfate solution into a polystyrene cup.	
	2. Measure the temperature of copper sulfate solution every minute for 3 minutes.	
	3. Add magnesium on the fourth minute.	
	4. Measure the temperature of the mixture at 5 minutes and then every minute up to 14 minutes.	
0 5.1	What is the dependent variable in this investigation? [1 mark]	
	Question 5 continues on the next page	
	Turn over ▶	•


Do not write outside the

0 5.2	Suggest why the copper sulfate solution was left for four minutes before adding the magnesium. [1	Do not wr outside th box	
0 5.3	 Complete Figure 4 by: drawing a line of best fit through all the points after 7 minutes extending the line back to 4 minutes. 	marks]	
0 5.4	The temperature change for the reaction is the temperature difference between two graph lines at 4 minutes. Determine the temperature change for the reaction. Use Figure 4 .	the marks]	
	Temperature change =	°C	
05.5	Explain why the temperature of the mixture decreases after 7 minutes.	marks]	

0 5.6	The student repeated the experiment with an unknown metal ${f Q}$ instead		Do not write outside the box
	of magnesium.		
	All the other variables were kept the same.		
	The student recorded a smaller temperature change.		
	Suggest the identity of metal Q .		
	Give one reason for your answer.	[2 marks]	
	Metal Q		
	Reason		
0 5.7	A copper sulfate solution contained 0.100 moles of copper sulfate dissolved in 0.500 dm ³ of water.		
	Calculate the mass of copper sulfate in 30.0 cm ³ of this solution.		
	Relative formula mass (M_r): CuSO ₄ = 159.5		
		[4 marks]	
	Mass =		14
	Mid55 -	g	

IB/M/Jun20/8464/C/1H

0 6.2	The gold foil is:	Do not write outside the box
	 4.00 × 10⁻⁷ metres thick 	
	• 2400 atoms thick.	
	What is the diameter of one gold atom in metres?	
	Give your answer to 3 significant figures.	
	[3 marks]	
	Diameter of one gold atom (3 significant figures) =m	

18

		Do not write
06.3	Gold reacts with the elements in Group 7 of the periodic table.	outside the
	0.175 g of gold reacts with chlorine.	
	The equation for the reaction is:	
	2 Au + 3 Cl ₂ \rightarrow 2 AuCl ₃	
	Calculate the mass of chlorine needed to react with 0.175 g of gold.	
	Give your answer in mg	
	Relative atomic masses (<i>A</i> _r): Cl = 35.5 Au = 197 [5 marks]	
	Mass of chlorine =mg	10
	Turn over for the next question	

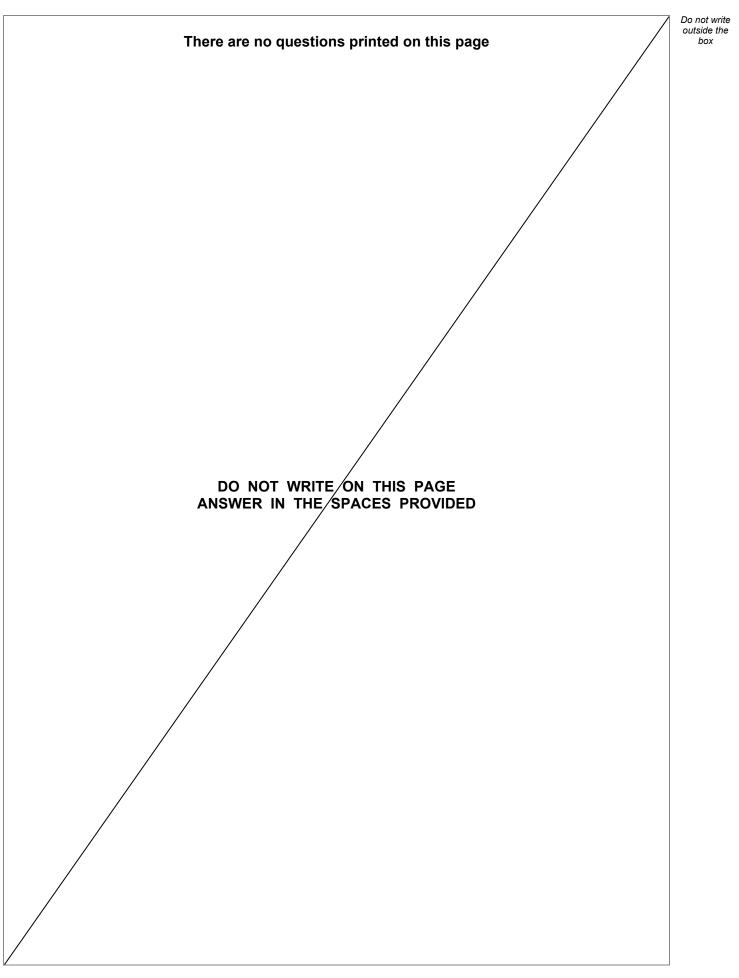
Turn over ►

		Do not write
0 7	This question is about elements.	outside the box
	Caesium is in Group 1 of the periodic table.	
0 7.1	Explain what happens to caesium atoms and to oxygen atoms when caesium reacts with oxygen to produce caesium oxide.	
	You should answer in terms of electrons.	
	[4 marks]	
0 7.2	Explain why caesium is more reactive than sodium.	
	You should answer in terms of electrons.	
	[4 marks]	

0 7. **3 Figure 6** shows part of Mendeleev's periodic table.

Figure 6

16	19
0	F
32	35.5
S	CI
79	80
Se	Br
128	127
Те	I


Explain why the early periodic tables placed iodine (I) before tellurium (Te), but then Mendeleev placed tellurium before iodine.

[3 marks]

11

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 AQA and its licensors. All rights reserved.

