Paper 3 C1H Mark scheme

Question number	Answer	Mark
$\mathbf{1 (a) (\mathbf { i })}$	Pencil is insoluble in the solvent (but chromatography would separate the ink in an ink line).	$\mathbf{(1)}$

Question number	Answer	Mark	
$\mathbf{1 (a) (i i)}$	Correct position of chromatography paper with start line and ink spot above surface of water.		
			water

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (a) (\text { iii) }}$	Rf $=14.5 / 15.3=0.9477$ (1) $=0.95$ answer to 2 significant figures (1)	Award full marks for correct numerical answer without working.	

Question number	Answer	Mark
$\mathbf{1 (b) (i)}$	B	(1)

Question number	Answer	Mark
$\mathbf{1 (b) (i i) ~}$	use a different solvent.	(1)

Question number	Answer	Mark
$\mathbf{1 (b) (\text { iii) }}$	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): (mixture S (1) because it gives the greatest number of spots/gives four spots (1)	(2)

Question number	Answer	Additional guidance	Mark
2(a)	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): a negative ion must have more electrons than protons in the particle (1) therefore Z will have a 2- charge (1)	Do not allow any comparison involving neutrons.	

Question number	Answer	Additional guidance	Mark
$\mathbf{2 (b)}$	$40+2 \times(14+16 \times 3)(1)$ $=164(1)$	Award full marks for correct numerical answer without working.	(2)

Question number	Answer	Mark
$\mathbf{2 (c)}$	\bullet Li ion with empty outer shell (1)	
	$\bullet 1+$ charge on Li (1)	
	$\bullet 8$ electrons on outer shell of F (1)	
$\bullet 1-$ charge on F (1)		

Question number	Answer	Mark
3(a)(i)	C	(1)

Question number	Answer	Mark
3(a)(ii)	C	(1)

Question number	Answer	Mark
$\mathbf{3 (b)}$	Any two of the following points. For the acid, use the same: \bullet volume (1) \bullet concentration (1) - temperature (1)	(2)

Question number	Answer	Mark
$\mathbf{3 (c) (i)}$	electrolysis (1)	(1)

Question number	Answer	Mark
3(c)(ii)	An answer that combines identification- knowledge (1 mark) and understanding (1 mark) and reasoning/justification- understanding (1 mark). aluminium compounds are more stable than iron compounds (1) so carbon is not a strong enough reducing agent to produce aluminium from its ore (1)	(2)

Question number	Answer	Mark
3(d)	$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ \bullet Correct formulae (1) \bullet Balancing of correct formulae (1)	

Question number	Answer	Mark
4(a)	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark): (J and \mathbf{K} are electrolytes (1) because their solutions conduct electricity and are decomposed (1)	(2)

Question number	Answer	Mark
4(b)	D	(1)

Question number	Answer	Mark
4(c)	An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (3 marks): hydrogen (H^{+}) and sodium (Na+$)$ions attracted to cathode, hydroxide $\left(\mathrm{OH}^{-}\right)$ions and sulfate $\left(\mathrm{SO}_{4}^{2-}\right)$ ions attracted to anode (1) because the ions are attracted to the oppositely charged electrode (1)	
	2 hydrogen ions $/ 2 \mathrm{H}^{+}$accept $2 \mathrm{e}^{-}$to form hydrogen molecule/ $\mathrm{H}_{2}(1)$ 4 hydroxide ions $/ 4 \mathrm{OH}^{-}$lose 4 e to form oxygen molecule $/ \mathrm{O}_{2}(1)$	

Question number	Answer	Mark
4(d)	$\mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu}$ • all species (1) • balancing (1)	

Question number	Answer	Additional guidance	Mark
5(a)(i)	Particles are same size when they should be different sizes (1) Model is in 2D but crystal is 3D (1)	Allow reverse statements giving correct information.	

Question number	Answer	Mark
5(a)(ii)	An explanation that combines identification - knowledge (1 mark) and reasoning/justification - understanding (2 marks): • very strong bonds/ionically bonded (1) between 2+ cations and 2-anions (1) - so requires lot of energy to separate magnesium and oxide ions to melt the solid (1)	(3)

Question number	Answer	Additional guidance	Mark
$\mathbf{5 (b) (i)}$	$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ $+\mathrm{CO}_{2}$ all formulae on correct side (2) - balancing (1)	Allow 3/4 formulae (1)	(3)

Question number	Answer	Additional guidance	Mark
$\mathbf{5 (b) (i i)}$	relative formula mass copper carbonate $=63.5+12.0+(3 \times 16.0)$ $=123.5$ relative formula mass copper oxide $=63.5+16.0$ $=79.5(1)$ mass copper oxide $=\frac{15.0 \times 79.5}{123.5}=9.7 \mathrm{~g}$ to 2 s.f. (1)	Award full marks for correct numerical answer without working.	
	Answer must be to two significant figures		
	OR moles of copper carbonate $=\frac{15.0}{123.5}=0.12145$ (1) mass of copper oxide $=$ moles CuCO $\times 79.5$ $=9.7 \mathrm{~g}$ to 2 sf (1) Answer must be to two significant figures		(2)

Question number	Answer	Additional guidance	Mark
5(c)	$2.4 / 24$ moles $\mathrm{Mg}=0.1 \mathrm{~mol}(1)$ and 0.2 moles $\mathrm{H}_{2} \mathrm{O}$ has mass $0.2 \times$ formula mass $\mathrm{H}_{2} \mathrm{O}=3.6 \mathrm{~g}$ (1) total mass reactants $=2.4+3.6$ $=6.0 \mathrm{~g}$ is the same as total mass products $=5.8+0.2$ $=6.0 \mathrm{~g} \mathrm{(1)}$	Award full marks for correct numerical answer without working.	

Question number	Answer	Mark
$\mathbf{6 (a) (i)}$	An explanation that makes reference to: identification - knowledge (1 mark) and reasoning /justification - knowledge (1 mark): - a strong acid is completely ionised in solution/exists completely as ions (1) but a weak acid is only partly ionised/exists mainly as molecules with very few ions present (1)	(2)

Question number	Answer	Mark
6(a)(ii)	hydroxide ions react with hydrogen ions and reduce the hydrogen ion concentration therefore increase pH (1)	(1)

Question number	Answer	Mark
$\mathbf{6 (b)}$	$\mathrm{ZnO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$ \bullet zinc nitrate formula (1) \bullet full, balanced equation (1)	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (c)}$	mass $=50 \times \frac{40}{1000}(1)=2(\mathrm{~g})(1)$	Award full marks for correct numerical answer without working.	(2)

Question Number	Indicative content
6(d)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO2 (3 marks) - suitable acid: sulfuric acid - suitable substance : magnesium oxide / magnesium carbonate / magnesium hydroxide / magnesium - equation for reaction: $\begin{aligned} & \mathrm{MgO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} / \\ & \mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \end{aligned}$ AO3 (3 marks) - add solid to warmed acid until in excess solid remains (oxide and hydroxide) / add solid a little at a time until no more bubbles (carbonate/metal) - filter off the excess solid, pour remaining solution into an evaporating basin - \{heat solution / leave the water to evaporate\} - until pure salt crystals form and then dry salt crystals with absorbent paper/leave to dry.

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Level } & \text { Mark } & \text { Descriptor } \\
\hline & 0 & \text { No rewardable material. } \\
\hline \text { Level 1 } & 1-2 & \begin{array}{l}\text { - The plan attempts to link and apply knowledge and understanding } \\
\text { of scientific enquiry, techniques and procedures, flawed or } \\
\text { simplistic connections made between elements in the context of } \\
\text { the question. (AO2) }\end{array} \\
\hline \text { Level } 2 & 3-4 & \begin{array}{l}\text { Analyses the scientific information but understanding and } \\
\text { connections are flawed. An incomplete plan that provides limited } \\
\text { synthesis of understanding. (AO3) }\end{array}
$$

\hline Lhe explanation is mostly supported through linkage and

application of knowledge and understanding of scientific enquiry,

techniques and procedures, some logical connections made

between elements in the context of the question. (AO2)\end{array}\right\}\)| - Analyses the scientific information and provides some logical |
| :--- |
| connections between scientific enquiry, techniques and |
| procedures. A partially completed plan that synthesises mostly |
| relevant understanding, but not entirely coherently. (AO3) |$|$

