AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature

GCSE

COMBINED SCIENCE: TRILOGY

Foundation Tier

Physics Paper 2F
Friday 12 June 2020
Morning
Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- If you need extra space for your answer(s), use the lined pages at the end of

For Examiner's Use

Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0	1	Figure 1 shows a girl bowling a ball along a ten-pin bowling lane.

Figure 1

The girl is trying to knock down the ten pins at the end of the bowling lane.
As the ball travels along the lane the velocity of the ball decreases.

0	1.	1

Which statement describes a vector?
Tick (\checkmark) one box.

Vectors have direction only. \square

Vectors have magnitude and direction. \square
Vectors have magnitude only.

$\mathbf{0}$	$\mathbf{1} .2$	$\mathbf{2}$ Why does the velocity of the ball decrease as the ball travels along the lane?

Tick (\checkmark) one box.

The force of gravity slows the ball down.

There are no forces acting on the ball.

There is a resultant force acting on the ball.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ The ball travels along the lane at an average speed of $4.5 \mathrm{~m} / \mathrm{s} \mathrm{s}$, l |
| :--- | :--- | :--- | :--- |

It takes the ball 4.0 seconds to travel the length of the lane.

Calculate the length of the lane.
Use the equation:

$$
\text { distance travelled }=\text { speed } \times \text { time }
$$

\qquad
\qquad
\qquad
\qquad
Length of the lane $=$ m

Figure 2 shows the ball hitting one of the pins.
Figure 2

| 0 | 1 | $\mathbf{4}$ Draw an arrow on Figure 2 to show the force of the pin on the ball. |
| :--- | :--- | :--- | :--- |

It takes 0.15 seconds for the velocity to change.

Calculate the acceleration of the pin.
Use the equation:

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }}
$$

\qquad
\qquad
\qquad
\qquad
Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

$\mathbf{0}$	$\mathbf{1}$.6	When the pin is struck it accelerates.

Complete the sentences.
Choose answers from the box.
Each answer can be used once, more than once, or not at all.

decreases	increases	stays the same

The displacement of the pin from the girl \qquad .

The mass of the pin \qquad .

The kinetic energy of the pin \qquad .

Do not write

Turn over for the next question

$\mathbf{0}$	$\mathbf{2}$	Figure 3 shows a computer keyboard.

There is a spring under each key.
Figure 3

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Why do the keys have springs under them?

Tick (\checkmark) one box.

Springs make the keys easier to press. \square
Springs make the keys lighter. \square

Springs push the keys back to their original position. \square

| $\mathbf{0}$ | $\mathbf{2} .2$ Why does every spring used in the keyboard have the same spring constant? |
| :--- | :--- | :--- |

[1 mark]
Tick (\checkmark) one box.

So that more than one key can be pressed at the same time.

So that the same force is needed to press each key.

So that the springs are all the same length.

Figure 4 shows one of the keys and its spring.
Figure 4

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ What happens to the length of the spring when the key is pressed? |
| :--- | :--- | :--- | :--- |

Figur

-
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .4$ How far must the key move before it touches the switch? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.
4.0 mm \square
4.0 cm \square
$4.0 \mu \mathrm{~m}$ \square

| $\mathbf{0}$ | $\mathbf{2} .5$ |
| :--- | :--- | :--- | If a key is not pressed with enough force, no signal is sent to the computer.

Explain why.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .6$ | 6 |
| :--- | :--- | :--- | The spring in Figure $\mathbf{4}$ has a spring constant of $200 \mathrm{~N} / \mathrm{m}$

Calculate the force on the spring when the key moves a distance of 0.0040 m Use the equation:

$$
\text { force }=\text { spring constant } \times \text { compression }
$$

\qquad
\qquad
\qquad
\qquad
Force $=$ \qquad N

| 0 | 2 | $\mathbf{7}$ Suggest two ways the spring in the key in Figure $\mathbf{4}$ could be changed so that the |
| :--- | :--- | :--- | switch can be closed more quickly.

1 \qquad
\qquad
2 \qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{3} \quad$ X-rays and gamma rays are types of electromagnetic waves. |
| :--- | :--- | :--- |

X-rays are used for medical imaging.

| 0 | $\mathbf{3}$. | $\mathbf{1}$ Which substance will not absorb X-rays? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Table 1 shows the effect of exposure to different doses of radiation.
Table 1

Dose in $\mathbf{m S v}$	Effect on the human body
100	slightly increased risk of cancer
1000	5% increased risk of cancer
5000	high risk of death

$\mathbf{0}$	$\mathbf{3} .2$	$\mathbf{2}$ During one X -ray a person receives a dose of 0.100 mSv

Why is this dose unlikely to harm the person?
\qquad
\qquad

0	3	3	A doctor takes an X-ray photograph of a person.

When taking the X -ray photograph, the doctor stands behind a screen.
Suggest why.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3} .4$	$\mathbf{4}$ Which of the following are gamma rays used for?

Do not write outside the box

Tick (\checkmark) one box.

Cooking food

Energy-efficient lamps

Sterilising medical equipment \square

0	3	5

Tick (\checkmark) one box.

They are ionising

They are radioactive

They travel at the speed of light

0	$\mathbf{3} .6$	Electromagnetic waves are also used in communications.

Describe how microwaves and visible light are used in communications.

Microwaves
\qquad
\qquad
\qquad
Visible light \qquad
\qquad
\qquad
\qquad

Figure 5

| 0 | 4 | 1 |
| :--- | :--- | :--- | The gradient of the distance-time graph gives the speed of the bicycle.

Determine the speed of the bicycle.
\qquad
\qquad
\qquad
\qquad
Speed $=$ \qquad m / s
-

| $\mathbf{0}$ | $\mathbf{4} .2$ Which force acting on the moving bicycle is a non-contact force? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

Air resistance

Friction

Gravitational force

Normal contact force

0	$\mathbf{4}$	$\mathbf{3}$	The bicycle travels a distance of 250 m

The bicycle exerts a constant horizontal force of 30 N on the ground.

Calculate the work done.
Use the equation:

$$
\text { work done }=\text { force } \times \text { distance }
$$

Choose the unit from the box.

\mathbf{J}	kg	m

\qquad
\qquad
\qquad
\qquad
Work done = \qquad Unit \qquad

$\mathbf{0}$	$\mathbf{4}$.4	The bicycle travels at a constant speed.

Complete the sentences.
Choose answers from the box.

chemical	frictional	kinetic
magnetic		tension

As the bicycle moves, work is done against \qquad forces.

There is no change in the cyclist's \qquad store of energy.

There is a decrease in the cyclist's \qquad store of energy.

0	5	Figure 6 shows four waves.

The waves are drawn to the same scale.
Figure 6
A

B

C

D

Tick (\checkmark) one box.
A

B \square
C

D

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{2}$ Which wave has the greatest frequency?

Tick (\checkmark) one box.
A

B

C \square
D

0	5	3	Which wave has the greatest wavelength?

Tick (\checkmark) one box.
A

B \square
C \square
D

| $\mathbf{0}$ | $\mathbf{5}$ | 4 | A wave has a frequency of 1650 Hz and a wavelength of 0.200 m |
| :--- | :--- | :--- | :--- | Calculate the wave speed.

Use the equation:

$$
\text { wave speed }=\text { frequency } \times \text { wavelength }
$$

\qquad
\qquad
\qquad
\qquad
Wave speed = \qquad m / s

A student uses a mobile phone app that displays sound waves.
Figure 7 shows the student holding the mobile phone close to a loudspeaker.
Figure 7

Figure 8 shows the wave pattern seen on the phone screen.
Figure 8

| 0 | 5 | 5 |
| :--- | :--- | :--- | What is the period of the wave shown in Figure 8?

Tick (\checkmark) one box.
$0.002 \mathrm{~s} \square$
$0.004 \mathrm{~s} \square$
$0.006 \mathrm{~s} \square$
$0.008 \mathrm{~s} \square$

0	$\mathbf{5} .6$	Determine the frequency of the wave shown in Figure 8.

Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Frequency $=$ \qquad Hz

0	6	Figure 9 shows five different metal samples.

Figure 9

| 0 | 6 | 1 |
| :--- | :--- | :--- | A student placed a magnet close to each metal sample.

Describe what happened.
[2 marks]
\qquad
\qquad
\qquad
\qquad

Figure 10 shows a paper clip being attracted to a permanent magnet.
Figure 10

| $\mathbf{0}$ | 6 |
| :--- | :--- | $\mathbf{2}$ The paper clip in Figure 10 is not a permanent magnet.

Explain what would happen if the paper clip was removed and brought close to the south pole of the permanent magnet.
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{6} .3$	$\begin{array}{l}\text { Write down the equation that links gravitational field strength }(g) \text {, mass }(m) \text { and } \\ \text { weight }(W)\end{array}$

\qquad

| 0 | 6 | 4 |
| :--- | :--- | :--- | The student added more paperclips to one end of the magnet.

The maximum number of paperclips the magnet could hold was 20
Each paper clip had a mass of 1.0 g
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the maximum force the magnet can exert. weight (W).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Force $=$ \qquad

| $\mathbf{0}$ | $\mathbf{7}$ | A student investigated how the height of a ramp affects the acceleration of a trolley |
| :--- | :--- | :--- | down the ramp.

Figure 11 shows some of the equipment used.
Figure 11

| $\mathbf{0}$ | $\mathbf{7} .1$ | Plan an investigation to determine how the height of the ramp affects the acceleration |
| :--- | :--- | :--- | :--- | of the trolley.

\qquad

Table 2 shows the results.
Table 2

Height of ramp in metres	0.1	0.2	0.3	0.4	0.5	0.6
Acceleration in $\mathrm{m} / \mathbf{s}^{2}$	0.9	1.3	2.1	3.2	3.9	4.3

The first two results have been plotted on Figure 12.
Figure 12

0	7	2	$C o m p l e t e ~ F i g u r e ~$

You should:

- label the axes
- plot the remaining results from Table 2
- draw a line of best fit.

\qquad

| $\mathbf{0}$ | $\mathbf{7} .4$ | When the resultant force on the trolley was 0.63 N the acceleration of the trolley |
| :--- | :--- | :--- | was $2.1 \mathrm{~m} / \mathrm{s}^{2}$

Calculate the mass of the trolley.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of trolley = \qquad kg

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2020 AQA and its licensors. All rights reserved.

