2 0 1 This question is about reactions of metals. Figure 1 shows what happens when calcium, copper, magnesium and zinc are added to hydrochloric acid. Figure 1 Calcium Copper Magnesium Zinc Hydrogen 0 0 0 0 0 1 . What is the order of decreasing reactivity of these four metals? 1 [1 mark] Tick (✓) one box. Zn Ca Cu Mg Ca Cu Mg Zn Cu Zn Ca Mg

Ca Mg Zn Cu

	A student wants to make a fair comparison of the reactivity of the metals with hydrochloric acid.	1
0 1.2	Name two variables that must be kept constant.	[2 marks]
	1	
	2	
0 1.3	What is the independent variable in this reaction?	[1 mark]
0 1.4	Predict the reactivity of beryllium compared with magnesium. Give a reason for your answer. Use the periodic table.	[2 marks]
	Reason	
0 1.5	A solution of hydrochloric acid contains 3.2 g of hydrogen chloride in 50 cm ³ Calculate the concentration of hydrogen chloride in g per dm ³	[3 marks]
	Concentration =	n ner dm ³

Turn over ►

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.1	Ca Mg Zn Cu		1	AO3 5.4.1.2
01.2	any two from: • mass (of metal / element) • surface area (of metal / element) • concentration (of acid) • volume (of acid) • temperature (of acid)	allow weight ignore size ignore length ignore pH ignore strength ignore room temperature	2	AO3 5.4.1.2
01.3	(type of) metal / element		1	AO2 5.4.1.2

01.4		allow converse answers for magnesium MP2 only if MP1 is correct		AO3 5.1.2.3 5.1.2.5 5.4.1.2
	(beryllium is) less reactive		1	
	any one from:		1	
	 greater attraction between nucleus and outer electrons more energy is needed to remove electrons loss of electrons is more difficult outer electrons closer to nucleus less shielding 	allow higher in group allow reactivity increases down the group ignore reactivity series		

01.5		an answer of 64 (g per dm ³) scores 3 marks		AO2 5.3.2.5
		an incorrect answer for one step does not prevent allocation of marks for subsequent steps		
	$\frac{50}{1000}$ (dm ³)		1	
	$= 0.05 (dm^3)$		1	
	$(\frac{3.2}{0.05}) = 64 \text{ (g per dm}^3)$		1	
	alternative approach:			
	$\frac{3.2}{50}$ (1)			
	= 0.064 (1)			
	$(\times 1000) = 64 \text{ (g per dm}^3) (1)$			
	alternative approach:			
	$\frac{1000}{50}$ (1)			
	= 20 (1)			
	$(\times 3.2) = 64 \text{ (g per dm}^3) (1)$			
		an answer of 0.16 / 0.064 / 0.64 / 6.4 / 6.4 × 10^{-5} (g per dm ³) gains 2 marks		

Total			9
-------	--	--	---