$\mathbf{0}$	$\mathbf{1}$	Water that is safe to drink contains dissolved substances.

0	1	$\mathbf{1}$ What do we call water that is safe to drink?

Tick (\checkmark) one box.

Desalinated

Filtered

Fresh

Potable

0	1	2

Give the result of the test if the water is pure.

Test
Result
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1} .3$ | $\mathbf{3}$ Describe a method to determine the mass of dissolved solids in |
| :--- | :--- | :--- | a $100 \mathrm{~cm}^{3}$ sample of river water.

\qquad

$\mathbf{0}$	$\mathbf{1} .4$	A

Calculate the mass of dissolved solids in grams in $250 \mathrm{~cm}^{3}$ of this sample of river water.

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of dissolved solids =
 drinking water.

A sample of drinking water contains 44 mg per dm^{3} of sulfate ions.
Calculate the percentage (\%) of the maximum allowed mass of sulfate ions in the sample of drinking water.
\qquad
\qquad
\qquad
\qquad
Percentage (\%) of the maximum allowed mass = \qquad \%

Question	Answers	Extra information	Mark	AO / Spec. Ref.	ID

01.1	potable		1	AO1.1 5.10 .1 .2	A

01.2	boil (water)	allow boils at $100^{\circ} \mathrm{C}$ for 2 marks ignore heat do not accept filter do not accept incorrect test	AO2 (boils) at $100^{\circ} \mathrm{C}$	E
		alternative approach freeze (water) (1) (freezes) at $0^{\circ} \mathrm{C}$ (1) if no other mark awarded, allow 1 mark for evaporate or distil water and no solid left	1	

01.3 Level 2: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

| $3-4$ | AO1.1
 5.10 .1 .2
 10.2 .13 | E |
| :---: | :---: | :---: | :---: |
| $1-2$ | | |
| | | |

To access Level 2 there should be an indication of using a known volume of water, heating until dry and determining the mass of solid.

01.4	(conversion of cm^{3} to dm^{3}) $\left(250 \mathrm{~cm}^{3}=\right) \frac{250}{1000}$ or $0.25\left(\mathrm{dm}^{3}\right)$ (conversion of mg to g) $(125 \mathrm{mg}=) \frac{125}{1000}$ or $0.125(\mathrm{~g})$ $(0.25 \times 0.125)=0.03125$ $=0.031(\mathrm{~g})$	an answer of $0.031(\mathrm{~g})$ scores 4 marks allow correct calculation from incorrect attempt(s) at conversion allow an answer correctly rounded to 2 significant figures from an incorrect calculation that uses the values in the question	1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 5.3.2.5 } \\ \text { 10.2.13 } \end{gathered}$	E

01.5	$\begin{aligned} & \frac{44}{500} \times 100 \\ & =8.8(\%) \end{aligned}$	an answer of 8.8 (\%) or 9 (\%) scores 2 marks allow 9 (\%)	1 1	$\begin{gathered} \text { AO2 } \\ \text { 5.10.1.2 } \\ 10.2 .13 \end{gathered}$	E

Total			13

Question	Answers	Extra information	Mark	AO / Spec. Ref.	ID

\(\left.$$
\begin{array}{|c|l|l|c|c|c|}\hline \mathbf{0 2 . 1} & \begin{array}{l}\text { high temperatures (in the } \\
\text { engine) } \\
\text { enable oxygen and nitrogen } \\
\text { (from air) to react }\end{array} & \text { allow combine / bond for react }\end{array}
$$ \quad 1 \begin{array}{c}AO1 \\

5.9 .3 .1\end{array}\right]\)| E |
| :--- |

