0	1	Figure 1 shows two models of the atom.

Figure 1

Plum pudding model

Nuclear model

| $\mathbf{0}$ | 1 | 1 |
| :--- | :--- | :--- | Write the labels on Figure 1

Choose the answers from the box.

atom	electron	nucleus
neutron	orbit	proton

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Explain why the total positive charge in every atom of an element is always the same. |
| :--- | :--- | :--- | [2 marks]

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{3}$ The results from the alpha particle scattering experiment led to the nuclear model.

Alpha particles were fired at a thin film of gold at a speed of 7% of the speed of light.
Determine the speed of the alpha particles.
Speed of light $=300000000 \mathrm{~m} / \mathrm{s}$
\qquad
\qquad
Speed $=$ \qquad m / s

0	1	.4

Figure 2

Hydrogen

A hydrogen atom has a radius of $2.5 \times 10^{-11} \mathrm{~m}$
Determine the radius of a magnesium atom.
Use measurements from Figure 2
\qquad
\qquad
\qquad m

Question	Answers	Extra information	Mark	AO / Spec. Ref.
$\mathbf{0 1 . 1}$	electron		1	AO1
	atom		1	5.4 .1 .3
	nucleus		1	
	orbit		1	

$\mathbf{0 1 . 2}$	positive charge is provided by protons		1	AO1 (every atom of the same element contain the) same number of protons

$\mathbf{0 1 . 3}$		an answer of 21000000 scores 2 marks allow any correct method of determining 7% of 300000000 allow $2.1 \times 10^{7}(\mathrm{~m} / \mathrm{s})$	1	AO2
	$v=30000000 \times\left(\frac{7}{100}\right)$			
$v=21000000(\mathrm{~m} / \mathrm{s})$				

01.4	$\begin{aligned} & r=6 \times 2.5 \times 10^{-11} \\ & r=1.5 \times 10^{-10}(\mathrm{~m}) \end{aligned}$	an answer in the range $1.4 \times$ 10^{-10} to 1.6×10^{-10} scores 2 marks allow a ratio in the range of 5.76.3 or measurements that would give this range, correctly substituted allow 1.4×10^{-10} to 1.6×10^{-10} their ratio $\times 2.5 \times 10^{-11}$ correctly calculated scores 1 mark	1 1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 6.4.1.1 } \end{gathered}$
Total			10	

