0	1	Figure 1 shows a girl bowling a ball along a ten-pin bowling lane.

Figure 1

The girl is trying to knock down the ten pins at the end of the bowling lane.
As the ball travels along the lane the velocity of the ball decreases.

0	1.	1

Which statement describes a vector?
Tick (\checkmark) one box.

Vectors have direction only. \square

Vectors have magnitude and direction. \square
Vectors have magnitude only.

$\mathbf{0}$	$\mathbf{1} .2$	$\mathbf{2}$ Why does the velocity of the ball decrease as the ball travels along the lane?

Tick (\checkmark) one box.

The force of gravity slows the ball down.

There are no forces acting on the ball.

There is a resultant force acting on the ball.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ The ball travels along the lane at an average speed of $4.5 \mathrm{~m} / \mathrm{s} \mathrm{s}$, l |
| :--- | :--- | :--- | :--- |

It takes the ball 4.0 seconds to travel the length of the lane.

Calculate the length of the lane.
Use the equation:

$$
\text { distance travelled }=\text { speed } \times \text { time }
$$

\qquad
\qquad
\qquad
\qquad
Length of the lane $=$ m

Figure 2 shows the ball hitting one of the pins.
Figure 2

| 0 | 1 | $\mathbf{4}$ Draw an arrow on Figure 2 to show the force of the pin on the ball. |
| :--- | :--- | :--- | :--- |

It takes 0.15 seconds for the velocity to change.

Calculate the acceleration of the pin.
Use the equation:

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }}
$$

\qquad
\qquad
\qquad
\qquad
Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

$\mathbf{0}$	$\mathbf{1}$.6	When the pin is struck it accelerates.

Complete the sentences.
Choose answers from the box.
Each answer can be used once, more than once, or not at all.

decreases	increases	stays the same

The displacement of the pin from the girl \qquad .

The mass of the pin \qquad .

The kinetic energy of the pin \qquad .

Do not write

Turn over for the next question

Question	Answers	Extra information	Mark	AO I Spec. Ref.
01.1	vectors have magnitude and direction		1	$\begin{gathered} \text { AO1 } \\ 6.5 .4 .1 .3 \end{gathered}$
01.2	there is a resultant force acting on the ball		1	$\begin{gathered} \mathrm{AO1} \\ 6.5 .4 .2 .1 \end{gathered}$
01.3	$\begin{aligned} & \text { length of lane }=4.5 \times 4.0 \\ & \text { length of lane }=18(\mathrm{~m}) \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ 6.5 .4 .1 .3 \end{gathered}$
01.4	arrow in opposite direction arrow same length drawn from the ball		1 1	$\begin{gathered} \text { AO1 } \\ \text { 6.5.4.2.3 } \end{gathered}$
01.5	$\begin{aligned} & a=\frac{12-0}{0.15} \\ & a=80\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$		1 1	$\begin{gathered} \mathrm{AO} 2 \\ 6.5 .4 .1 .3 \end{gathered}$
01.6	increases stays the same increases		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \text { 6.1.1.2 } \\ \text { 6.5.4.1.3 } \end{gathered}$
Total			11	

