0	1	Figure 1 shows the forces acting on a car moving at a constant speed.

Figure 1

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ Which force would have to increase to make the car accelerate? |
| :--- | :--- | :--- | :--- |

Tick one box.
A
B
C
D \square

0	1	2	The car travels a distance of 2040 metres in 2 minutes.

Use the following equation to calculate the mean speed of the car.
mean speed $=\frac{\text { distance }}{\text { time }}$

| 0 | 1 | 3 |
| :--- | :--- | :--- | :--- | The car makes an emergency stop.

Figure 2 shows the thinking distance and braking distance of the car.

Figure 2

What is the stopping distance?
[1 mark]

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$ The person driving the car is tired.

What effect will this have on the thinking distance and braking distance?
Tick one box for thinking distance.
Tick one box for braking distance.

	decreases	increases	stays the same
thinking distance	\square	\square	\square
braking distance	\square	\square	

Turn over for the next question

Question 1

Question	Answers	Extra information	Mark	AO / Spec. Ref.

$\mathbf{0 1 . 1}$	C		1	AO1/1 6.5 .1 .2

01.2	$2040 / 120$ $17(\mathrm{~m} / \mathrm{s})$	1 1	AO2/1 allow $17(\mathrm{~m} / \mathrm{s})$ with no working shown for 2 marks	1.4 .1

$\mathbf{0 1 . 3}$	the thinking distance and the braking distance combined	accept 36 m	1	AO2/1
6.5 .4 .3 .1				

$\mathbf{0 1 . 4}$	thinking distance increases		1	AO1/1
	braking distance stays the same		1	$6.5 .4 .3 .1 / 2$

Total

6

