| $\mathbf{0}$ | $\mathbf{2}$ |
| :--- | :--- | :--- |\quad This question is about salts.

Ammonium nitrate solution is produced when ammonia gas reacts with nitric acid.

$\mathbf{0}$	$\mathbf{2} .1$	Give the state symbol for ammonium nitrate solution.

\qquad

$\mathbf{0}$	$\mathbf{2} .2$
$\mathbf{2}$	What is the formula of nitric acid?

Tick (\checkmark) one box.

HCl

HNO_{3}

$\mathrm{H}_{2} \mathrm{SO}_{4}$

$\mathrm{NH}_{4} \mathrm{OH}$

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{3}$ Ammonia gas dissolves in water to produce ammonia solution.

Ammonia solution contains hydroxide ions, OH^{-}
A student adds universal indicator to solutions of nitric acid and ammonia.
What colour is observed in each solution?

Colour in nitric acid
Colour in ammonia solution \qquad

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{4}$	The student gradually added nitric acid to ammonia solution.

Which row, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, shows the change in pH as the nitric acid is added until in excess?

Tick (\checkmark) one box.

	pH of ammonia solution at start	pH after addition of excess nitric acid
A	10	7
B	2	10
C	7	1
D	10	2

$\mathbf{0}$	$\mathbf{2} .5$	$\mathbf{5}$ Calculate the percentage by mass of oxygen in ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$.

Relative atomic masses $\left(A_{r}\right): \quad H=1 \quad N=14 \quad \mathrm{O}=16$
Relative formula mass $\left(M_{\mathrm{r}}\right): \mathrm{NH}_{4} \mathrm{NO}_{3}=80$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Percentage by mass of oxygen $=$ \%

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2} .6$ | Describe a method to investigate how the temperature changes when |
| :--- | :--- | :--- | different masses of ammonium nitrate are dissolved in water.

You do not need to write about safety precautions.
\qquad

Question	Answers	Extra information	Mark	AO / Spec. Ref.

$\mathbf{0 2 . 1}$	(aq)	allow aq ignore aqueous ignore formulae	1	AO1

$\mathbf{0 2 . 2}$	HNO_{3}			
			1	$\mathrm{AO1}$
				5.1 .1 .1
			5.4 .2 .2	

| $\mathbf{0 2 . 3}$ | red | allow orange or yellow
 do not accept green
 allow shades of purple eg violet | 1 | 1 |
| :---: | :--- | :--- | :---: | :---: | | AO1 |
| :---: |
| purple |
| or |
| blue |$\quad 4.2 .4$

$\mathbf{0 2 . 4}$	D		1	AO3

Question	Answers	Mark	AO/ Spec. Ref

02.6

Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	$5-6$	AO3 AO2
Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	$3-4$	5.5 .1 .1
Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	$1-2$	
No relevant content		
Indicative content		
Steps		
- use a suitable container eg test tube		
- use insulation		
- add water		
- measure the initial water temperature (with a thermometer)		
- add stated mass eg 1g or 1 spatula		
- stir (to dissolve the solid)		
- measure the final (allow lowest or highest) temperature of the		
- solution		
- calculate the temperature difference or determine graphically		
- repeat with different masses		
- repeat with the same volume of water		
to access level 3 there must be an indication of how the		
temperature change is determined using different masses dissolved		
in the same quantity of water		

Total			14

