Do not write outside the box | 0 2 | This question is about salts. | | | | |---------|--|-----------|--|--| | | Ammonium nitrate solution is produced when ammonia gas reacts with nitric acid. | | | | | 0 2.1 | Give the state symbol for ammonium nitrate solution. | | | | | | | [1 mark] | | | | | | | | | | 0 2.2 | What is the formula of nitric acid? | [4 mouls] | | | | | Tick (✓) one box. | [1 mark] | | | | | HCl | | | | | | HNO ₃ | | | | | | H ₂ SO ₄ | | | | | | NH ₄ OH | | | | | | | | | | | 0 2 . 3 | Ammonia gas dissolves in water to produce ammonia solution. | | | | | | Ammonia solution contains hydroxide ions, OH ⁻ | | | | | | A student adds universal indicator to solutions of nitric acid and ammonia. What colour is observed in each solution? | | | | | | | | | | | | Colour in nitric acid | | | | | | Colour in ammonia solution | 0 2 . 4 | The student gradually added nitric acid to ammonia solution. | | | | | | |----------------------|---|------------------------------------|---|--|--|--| | | Which row, A , B , C or D , shows the change in pH as the nitric acid is added until in excess? | | | | | | | | [1 mark] Tick (✓) one box. | | | | | | | | | pH of ammonia
solution at start | pH after addition of excess nitric acid | | | | | | A | 10 | 7 | | | | | | В | 2 | 10 | | | | | | С | 7 | 1 | | | | | | D | 10 | 2 | | | | | 0 2 . 5 | Calculate the percentage by mass of oxygen in ammonium nitrate (NH ₄ NO ₃). Relative atomic masses (A_r): H = 1 N = 14 O = 16 Relative formula mass (M_r): NH ₄ NO ₃ = 80 [3 marks] | | | | | | | | Percentage by mass of oxygen =% Question 2 continues on the next page | | | | | | | The same of the page | | | | | | | | 0 2 . 6 | Describe a method to investigate how the temperature changes when different masses of ammonium nitrate are dissolved in water. | | |---------|--|-----------| | | different masses of ammonium nitrate are dissolved in water. | | | | You do not need to write about safety precautions. | | | | Tod do not need to write about barety procedutions. | [6 marks] | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|--|---|------|---------------------------| | 02.1 | (aq) | allow aq
ignore aqueous
ignore formulae | 1 | AO1
5.2.2.2 | | 02.2 | HNO ₃ | | 1 | AO1
5.1.1.1
5.4.2.2 | | 02.3 | red purple or blue | allow orange or yellow do not accept green allow shades of purple eg violet | 1 | AO1
5.4.2.4 | | 02.4 | D | | 1 | AO3
5.4.2.4 | | 02.5 | 3 × 16 or 48 $\frac{48}{80}$ (×100) 60 (%) | an answer of 60 (%) scores 3 marks an answer of 20 (%) scores 2 marks for: \[\frac{16}{80} \text{ (x 100) (1)} \] = 20 (%) (1) | 1 1 | AO2
5.3.1.2 | | Question | Answers | Mark | AO/
Spec. Ref | |----------|--|------|------------------| | 02.6 | Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced. | 5–6 | AO3
AO2 | | | Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced. | 3–4 | 5.5.1.1 | | | Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear. | 1–2 | | | | No relevant content | 0 | | | | Indicative content | | | | | Steps | | | | | use a suitable container eg test tube use insulation add water measure the initial water temperature (with a thermometer) add stated mass eg 1g or 1 spatula stir (to dissolve the solid) measure the final (allow lowest or highest) temperature of the solution calculate the temperature difference or determine graphically repeat with different masses repeat with the same volume of water to access level 3 there must be an indication of how the temperature change is determined using different masses dissolved in the same quantity of water | | | | Total | | 14 | |-------|--|----| | Total | | 14 |