02 A student wanted to determine the density of the irregular shaped object shown in Figure 3

Figure 3

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ Plan an experiment that would allow the student to determine the density |
| :--- | :--- | :--- | of the object.

\qquad

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ Another student did a similar experiment.

He determined the density of five common plastic materials.
Table 1 shows the results.
Table 1

Plastic material	Density in $\mathbf{~ k g} / \mathbf{m}^{3}$
Acrylic	1200
Nylon	1000
Polyester	1380
Polystyrene	1040
PVC	1100

Figure 4 shows the results plotted in a bar chart.
Figure 4

Complete Figure 4

You should:

- Write the correct scale on the y-axis.
- Draw the bars for polyester, polystyrene and PVC.

$\mathbf{0}$	$\mathbf{2} .3$	$\mathbf{3}$ The student is given a piece of a different plastic material.

The student determined the density of the material three times.
Table 2 shows the results.

Table 2

	Density in $\mathbf{~ k g} / \mathbf{m}^{3}$
1	960
2	1120
3	1040

Determine the uncertainty in the student's results.
\qquad
\qquad
Uncertainty = \qquad $\mathrm{kg} / \mathrm{m}^{3}$

Question	Answers	Mark	AO I Spec. Ref.
02.1	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5-6	$\begin{gathered} \text { AO1 } \\ \text { 6.3.1.1 } \end{gathered}$
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.	3-4	
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2	
	No relevant content	0	
	Indicative content - measure mass - use a top pan balance or scales - part fill a measuring cylinder with water - measure initial volume - place object in water - measure final volume - volume of object $=$ final volume - initial volume - fill a displacement / eureka can with water - water level with spout - place object in water - collect displaced water - measuring cylinder used to determine volume of displaced water - use of: $\text { density }=\frac{\text { mass }}{\text { volume }}$		

Question	Answers	Extra information	Mark	AO I Spec. Ref.
02.2	all y-axis values correct (minimum of 3)	allow 1 mark for two correct values	2	$\begin{gathered} \mathrm{AO} 2 \\ \text { 6.3.1.1 } \end{gathered}$
	all bars drawn to the correct height	allow 1 mark for two correct bars allow $\pm 1 / 2$ small square	2	

$\mathbf{0 2 . 3}$		an answer of 80 scores 2 marks ignore + and / or - signs	1	AO3 6.3 .1 .1
	$=80\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$			
Total		an answer of 160 scores 1 mark	1	

