| 0 | 2 |
| :--- | :--- | A scientist cooled the air inside a container.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ (C |
| :--- | :--- | :--- | The temperature of the air changed from $20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$

The volume of the container of air stayed the same.
Explain how the motion of the air molecules caused the pressure in the container to change as the temperature decreased.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ The air contained water that froze at $0^{\circ} \mathrm{C}$

The change in internal energy of the water as it froze was 0.70 kJ
The specific latent heat of fusion of water is $330 \mathrm{~kJ} / \mathrm{kg}$
Calculate the mass of ice produced.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of ice = kg

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$ The air also contained oxygen, nitrogen and carbon dioxide.

Oxygen boils at $-183^{\circ} \mathrm{C}$ and freezes at $-218^{\circ} \mathrm{C}$
Nitrogen boils at $-195^{\circ} \mathrm{C}$ and freezes at $-210^{\circ} \mathrm{C}$
Carbon dioxide sublimates at $-78^{\circ} \mathrm{C}$
The scientist continued to cool the air to a temperature of $-190^{\circ} \mathrm{C}$

What is the state of each substance at $-190^{\circ} \mathrm{C}$?
Tick (\checkmark) one box for each row of the table.

Substance	Solid	Liquid	Gas
Oxygen			
Nitrogen			
Carbon dioxide			

Question 2 continues on the next page

$\mathbf{0}$	$\mathbf{2} .4$	The air also contained a small amount of argon.

As the temperature of the air decreased from $20^{\circ} \mathrm{C}$ to $-190^{\circ} \mathrm{C}$ the argon changed from a gas to a liquid to a solid.

Explain the changes in the arrangement and movement of the particles of the argon as the temperature of the air decreased.
\qquad

Question	Answers	Extra information	Mark	AO / Spec. Ref.	ID

$\mathbf{0 2 . 1}$	pressure decreased		1	AO2.1	E		
because molecules have less (kinetic) energy so fewer collisions (with the wall/container each second)	allow less speed/velocity	allow collide with less force					
allow less force on the walls						$\quad 1$	6.3 .3 .1
:---:							

02.3					2	AO3/2b 6.3.1.1	E
	Substance	Solid	Liquid	Gas			
	Oxygen		\checkmark				
	Nitrogen			\checkmark			
	Carbon dioxide	\checkmark					
	2 correct answers scores 1 mark. if more than one tick in a row, neither tick can score a mark						

| $\mathbf{0 2 . 4}$ | Level 3: Relevant points (reasons/causes) are identified, given in
 detail and logically linked to form a clear account. | 5-6 | AO1.1 |
| :--- | :--- | :--- | :--- | E

