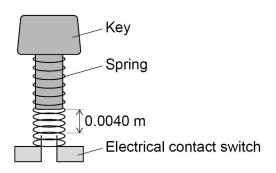
0 2 Figure 3 shows a computer keyboard.

There is a spring under each key.

Figure 3


0 2.1	Why do the keys have springs under them? Tick (✓) one box.			
	Springs make the keys easier to press.			
	Springs make the keys lighter.			
	Springs push the keys back to their original position.			
0 2.2	Why does every spring used in the keyboard have the same spring constant? [1 m] Tick (✓) one box.			
	So that more than one key can be pressed at the same ti	me.		
	So that the same force is needed to press each key.			
	So that the springs are all the same length.			

Turn over ▶

Figure 4 shows one of the keys and its spring.

Figure 4

0 2 . 3	What happens to the length of the spring when the key is pressed?	[1 mark]
0 2.4	How far must the key move before it touches the switch? Tick (✓) one box. 4.0 mm 4.0 μm	[1 mark]
0 2 . 5	If a key is not pressed with enough force, no signal is sent to the computer. Explain why.	[2 marks]

0 2 . 6				
	The spring in Figure 4 has a spring constant of 200 N/m	O		
	Calculate the force on the spring when the key moves a distance of 0.0040 m			
	Use the equation:			
	force = spring constant × compression [2 marks]			
	Force =N			
0 2 . 7	Suggest two ways the spring in the key in Figure 4 could be changed so that the switch can be closed more quickly.			
	[2 marks]			
	1			
	2	-		

Turn over for the next question

Turn over ▶

question	Answers	Extra information	Mark	AO / Spec. Ref.
02.1	springs push the keys back to their original position		1	AO1 6.5.3
02.2	so that the same force is needed to press each key		1	AO3 6.5.3
02.3	(the length) decreases	allow the spring compresses	1	AO1 6.5.3
02.4	4.0 mm		1	AO2 6.5.3
02.5	the spring/key will not move far enough		1	AO3 6.5.3
	so will not press the (electrical contact) switch		1	
02.6	F = 200 × 0.0040 F = 0.80 (N)	allow 0.8 (N)	1	AO2 6.5.3
02.7	shorter spring spring with a lower spring constant	allow spring that requires less force to compress allow weaker spring allow spring that is easier to compress	1	AO3 6.5.3
Total			10	