| $\mathbf{0}$ | $\mathbf{2}$ A student investigated how the height of a ramp affects the acceleration of a trolley |
| :--- | :--- | :--- | down the ramp.

Figure 3 shows some of the equipment used.
Figure 3

| $\mathbf{0}$ | $\mathbf{2} .1$ | Plan an investigation to determine how the height of the ramp affects the acceleration |
| :--- | :--- | :--- | of the trolley.

\qquad

Table 1 shows the results.
Table 1

Height of ramp in metres	0.1	0.2	0.3	0.4	0.5	0.6
Acceleration in $\mathbf{~} / \mathbf{s}^{2}$	0.9	1.3	2.1	3.2	3.9	4.3

The first two results have been plotted on Figure 4.
Figure 4

$\mathbf{0}$	$\mathbf{2} .2$	Complete Figure 4.

You should:

- label the axes
- plot the remaining results from Table 1
- draw a line of best fit.

\qquad

| $\mathbf{0}$ | $\mathbf{2} .4$ When the resultant force on the trolley was 0.63 N the acceleration of the trolley |
| :--- | :--- | :--- | was $2.1 \mathrm{~m} / \mathrm{s}^{2}$

Calculate the mass of the trolley.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of trolley = kg

Total		8	
Question	Answers	Mark	AO I Spec. Ref.
02.1	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5-6	AO3
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	3-4	AO1
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2	AO1
	No relevant content	0	6.5.4.2.2
	Indicative content measurements - place one wooden block under the ramp - vary the height by placing a different number of wooden blocks - measure the height of the ramp using a metre rule - measure the distance travelled using a metre rule - measure time taken using light gates (and computer/datalogger) - measure time taken using a stopclock or ticker timer - release trolley from the same position each time - release the trolley without applying a force results - repeat at the same height and calculate a mean - repeat for different heights - calculate acceleration using $a=(v-u) / t$ or $a=\frac{v^{2}-u^{2}}{2 s}$		

Question	Answers	Extra information	Mark	AO / Spec. Ref.

02.2	all points plotted correctly height of ramp in metres on x axis and acceleration in $\mathrm{m} / \mathrm{s}^{2}$ on y-axis) correct line of best fit	allow 1 mark for 3 points plotted correctly both quantity and unit required for both axes	2 1	$\begin{gathered} \text { AO2 } \\ \text { 6.5.4.2.2 } \\ \text { RPA19 } \end{gathered}$
02.3	resultant force $=$ mass \times acceleration or $F=m a$		1	$\begin{gathered} \text { AO1 } \\ \text { 6.5.4.2.2 } \\ \text { RPA19 } \end{gathered}$

$\mathbf{0 2 . 4}$	$0.63=m \times 2.1$		1	AO2
	$m=\frac{0.63}{2.1}$		1	RPA19
	$m=0.30(\mathrm{~kg})$	allow $0.3(\mathrm{~kg})$	1	

Total

