| $\mathbf{0}$ | $\mathbf{2}$ Figure 2 shows a slinky spring used to model a sound wave. |
| :--- | :--- | :--- |

Figure 2

\qquad

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ Label the arrows on Figure 2 |
| :--- | :--- | :--- | :--- |

Choose the answers from the box.

amplitude	compression	frequency
rarefaction		wavelength

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ What type of wave is a sound wave?

Tick one box.
electromagnetic

longitudinal

transverse \square

Question 2 continues on the next page

$\mathbf{0}$	$\mathbf{2} .3$	Figure $\mathbf{3}$ shows two students measuring the speed of sound in air.

Figure 3

One student bangs two bricks together.
The sound wave produced is reflected from the wall and travels back to the students.
Describe how they can determine the speed of sound.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.1			3	$\begin{gathered} \mathrm{AO1} \\ \text { 6.6.1.1 } \end{gathered}$
02.2	longitudinal		1	$\begin{gathered} \mathrm{AO1} \\ \text { 6.6.1.1 } \end{gathered}$

Question	Answers	Mark	AO I Spec. Ref.
02.3	Level 2: The method would lead to the production of a valid outcome. Key steps are identified and logically sequenced.	3-4	AO2
	Level 1: The method would not necessarily lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2	AO1
	No relevant content	0	
	Indicative content - measure the distance between the student with the bricks and the wall - trundle wheel or tape measure - measure the time taken from banging the bricks to the echo - double the measured distance to give the distance travelled or half the time - use: $\text { speed }=\frac{\text { distance travelled }}{\text { time }}$ - repeat timings - remove anomalies - calculate a mean		6.6.1.2
Total		8	

