0	3	Figure 5 shows a diver.

The diver is using a canister of compressed air so that he can breathe underwater.
Figure 5

$\mathbf{0}$	$\mathbf{3} .1$	$\mathbf{1}$ Which two sentences describe the movement of the air particles in the canister?

[2 marks]
Tick two boxes.

They vibrate about a fixed position.

They move in random directions.

mar
Tick two boxe

The motion of all the particles is predictable.

They move with a range of different speeds.

They move in circular paths.

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$	The temperature of the air inside the canister increases.

What happens to the movement of the air particles?
\qquad

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ It could be dangerous if the temperature of the air inside the canister increased by a |
| :--- | :--- | :--- | :--- | large amount.

Explain why.
\qquad
\qquad
\qquad
\qquad

A canister of air was tested to find out how the pressure changed when it was used by a diver.

- Air was allowed to escape from the canister.
- The pressure of the air in the canister was recorded every 5 minutes for 80 minutes.

Figure 6 shows the results.
Figure 6

0	3	4

Use Figure 6

Atmospheric pressure $=$ \qquad MPa

0	3	5
Divers can safely stay underwater until the pressure of the air in the canister has		

Determine the maximum time the diver can safely stay underwater.
Use Figure 6
\qquad
\qquad
Time $=$ \qquad minutes

| $\mathbf{0}$ | $\mathbf{3}$. | 6 |
| :--- | :--- | :--- | What happens to the volume of the air when it is released from the canister?

Turn over for the next question

Question	Answers	Extra information	Mark	AO / Spec. Ref.
$\mathbf{0 3 . 1}$	they move in random directions they move with a range of different speeds		1	AO1. 6.3 .3 .1

$\mathbf{0 3 . 2}$	the (mean) speed of the particles would increase	allow kinetic energy increases	1	AO1 6.3 .3 .1
$\mathbf{0 3 . 3}$	(if the temperature increases) the pressure increases so it could explode	allow an explanation in terms of large pressure difference	1	AO1 6.3 .3 .1

$\mathbf{0 3 . 4}$	$\mathrm{p}=0.1(\mathrm{MPa})$		1	AO2 6.3 .3 .1

03.5		an answer of 27 scores 3 marks		$\begin{gathered} \mathrm{AO} 3 \\ \text { 6.3.3.1 } \end{gathered}$
	$\mathrm{p}=2.25 \times\left(\frac{25}{100}\right)$	allow any correct method of determining 25% of 2.25 allow use of 2.2-2.3	1	
	$p=0.56$	allow 0.55-0.575	1	
	$\mathrm{t}=27$ (minutes)	allow 26-28 minutes allow correct value of t using their calculated value of p	1	

$\mathbf{0 3 . 6}$	(the volume of the air) increases		1	AO1 6.3 .3 .1

Total		10

