
0 3 Figure 5 shows a diver.

The diver is using a canister of compressed air so that he can breathe underwater.

Figure 5

Canister of compressed air

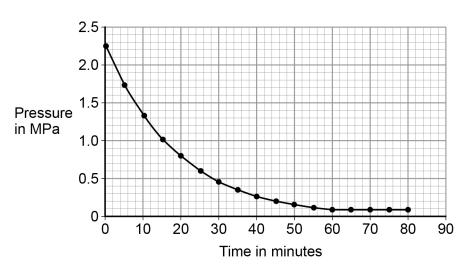
0 3.1	Which two sentences describe the movement of the air particles in the cani-		
	Tick two boxes.		[2 marks]
	They vibrate about a fixed position.		
	They move in random directions.		
	The motion of all the particles is predictable.		
	They move with a range of different speeds.		
	They move in circular paths.		
0 3.2	The temperature of the air inside the canister increases.		
	What happens to the movement of the air particles?		[1 mark]

Turn over ▶

0 3 . 3

It could be dangerous if the temperature of the air inside the canister increased by a large amount.

Explain	why.
---------	------


[2 marks]

A canister of air was tested to find out how the pressure changed when it was used by a diver.

- Air was allowed to escape from the canister.
- The pressure of the air in the canister was recorded every 5 minutes for 80 minutes.

Figure 6 shows the results.

Figure 6

0 3 . 4

Estimate the atmospheric pressure.

Use Figure 6

[1 mark]

Atmospheric pressure = _____ MPa

0 3.5	Divers can safely stay underwater until the pressure of the air in the canister reduced to 25% of its original value.				
	Determine the maximum time the diver can safely stay underwater.				
	Use Figure 6	3 marks]			
	Time =	_minutes			
0 3.6	What happens to the volume of the air when it is released from the canister?	[1 mark]			
	Turn over for the next question		1		

Turn over ▶

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.1	they move in random directions		1	AO1 6.3.3.1
	they move with a range of different speeds		1	0.0.0.
03.2	the (mean) speed of the particles would increase	allow kinetic energy increases	1	AO1 6.3.3.1
03.3	(if the temperature increases) the pressure increases	allow an explanation in terms of large pressure difference	1	AO1 6.3.3.1
	so it could explode		1	AO2 6.3.3.1
03.4	p = 0.1 (MPa)		1	AO2 6.3.3.1
03.5		an answer of 27 scores 3 marks		AO3 6.3.3.1
	$p = 2.25 \times \left(\frac{25}{100}\right)$	allow any correct method of determining 25% of 2.25 allow use of 2.2–2.3	1	0.3.3.1
	p = 0.56	allow 0.55–0.575	1	
	t = 27 (minutes)	allow 26–28 minutes allow correct value of t using their calculated value of p	1	
03.6	(the volume of the air) increases		1	AO1 6.3.3.1
Total			10	