

Suggest two properties that should be the same for each spring. 03. 2 [2 marks] 1_____ 2 Figure 6 shows one of the keys and its spring. 0 3 3 Figure 6 - Key Spring 10.0040 m (- Electrical contact switch The key must be pressed with a minimum force of 0.80 N before the key touches the switch. Calculate the spring constant of the spring in Figure 6. [3 marks] N/m Spring constant = _____

Do not write outside the

box

question	Answers	Extra information	Mark	AO / Spec. Ref.
03.1	the spring will return to its original length when the force is removed		1	AO1 6.5.3
03.2	Any two from: • spring constant • (original) length • diameter		2	AO3 6.5.3
03.3	$0.80 = k \times 0.0040$ $k = \frac{0.80}{0.0040}$ k = 200 (N/m)		1	AO2 6.5.3
03.4	the upward force on the spring is equal to the downward force the spring is inelastically deformed		1	AO3 6.5.3
Total			8]