0	3	Figure 5 shows a computer keyboard.

There is a spring under each key.
Figure 5

What is meant by elastic behaviour?
Tick (\checkmark) one box.

The spring will be compressed when the force is applied to it.

The spring will become deformed when the force is applied to it.
\square
\square

The spring will become longer when the force is removed.

The spring will return to its original length when the force is removed. \square

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{2}$ Suggest two properties that should be the same for each spring. |
| :--- | :--- | :--- | :--- |

1
\qquad
2
\qquad

0	3	3	Figure 6 shows one of the keys and its spring.

Figure 6

The key must be pressed with a minimum force of 0.80 N before the key touches the switch.

Calculate the spring constant of the spring in Figure 6.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Spring constant $=$ \qquad N / m

0	3	.4

The spring is stationary and has been stretched beyond its limit of proportionality.
Figure 7

Which two statements are true for the spring in Figure 7?

Tick (\checkmark) two boxes.

The elastic potential energy of the spring is zero.

The extension of the spring is directly proportional to the force applied. \square
The upward force on the spring is equal to the downward force.

The spring cannot be stretched any further.

The spring is inelastically deformed.

Tick(
\square
\square
\square

Turn over for the next question

question	Answers	Extra information	Mark	AO I Spec. Ref.
03.1	the spring will return to its original length when the force is removed		1	$\begin{aligned} & \text { AO1 } \\ & 6.5 .3 \end{aligned}$
03.2	Any two from: - spring constant - (original) length - diameter		2	$\begin{aligned} & \text { AO3 } \\ & 6.5 .3 \end{aligned}$
03.3	$\begin{aligned} & 0.80=k \times 0.0040 \\ & k=\frac{0.80}{0.0040} \\ & k=200(\mathrm{~N} / \mathrm{m}) \end{aligned}$		1 1 1	$\begin{aligned} & \mathrm{AO} 2 \\ & 6.5 .3 \end{aligned}$
03.4	the upward force on the spring is equal to the downward force the spring is inelastically deformed		1 1	$\begin{aligned} & \text { AO3 } \\ & 6.5 .3 \end{aligned}$
Total			8	

