$\mathbf{0}$	$\mathbf{5}$	This question is about electrolysis.

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ Some metals are extracted from molten compounds using electrolysis.

Why is electrolysis used to extract some metals?
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5} .2$ | $\mathbf{2}$ Aluminium is produced by electrolysis of a molten mixture. |
| :--- | :--- | :--- | :--- |

What two substances does the molten mixture contain?

1
2 \qquad

| 0 | 5 | .3 |
| :--- | :--- | :--- | Complete the half equation for the reaction at each electrode.

Half equation at negative electrode
\qquad \longrightarrow \qquad

Half equation at positive electrode
$2 \mathrm{Cl}^{-} \longrightarrow$ \qquad
-

Figure 4 shows the apparatus a student used to electrolyse copper chloride solution.
Figure 4

The student:

- measured the mass of copper deposited on the negative electrode after 60 minutes
- compared the mass deposited with the expected value.

$\mathbf{0}$	$\mathbf{5} .4$	Suggest two reasons why the mass deposited was different from the expected value.

[2 marks]
1 \qquad
\qquad
2 \qquad
\qquad

Question 5 continues on the next page

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{5}$	Figure $\mathbf{5}$ shows the expected mass of copper produced each minute.

Figure 5

Determine the expected mass of copper after 24 hours.
Use Figure 5.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = \qquad mg
Silver nitrate solution is electrolysed.

Figure 6 shows the change in mass of the negative electrode over 10 hours.
Figure 6

0	$\mathbf{5}$.	6
Determine the mass of the negative electrode at the start of the experiment.		

Use Figure 6.

\qquad

0	5	$\mathbf{7}$	Calculate the gradient of the line in Figure 6.

Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Gradient \qquad
Unit \qquad

| Question | Answers | Extra information | MarkAO /
 Spec. Ref. |
| :--- | :--- | :--- | :--- | :--- |

$\left.\begin{array}{|l|l|l|c|c|}\hline 05.1 & \begin{array}{l}\text { metal is too reactive to be } \\ \text { extracted using carbon } \\ \text { or } \\ \text { metal reacts with carbon }\end{array} & \begin{array}{l}\text { allow metal is more reactive } \\ \text { than carbon }\end{array} & 1 & \text { AO1 } \\ 5.4 .3 .3\end{array}\right]$

05.2		either order		AO1
	aluminium oxide	ignore bauxite or aluminium ore	1	5.4 .3 .3
	cryolite		1	

05.3				
	negative electrode:	allow multiples		AO2
	$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$			
	positive electrode:			
	$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$	allow $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}_{2}$	1	5.4 .3 .2
		1		

05.4	any two from: - concentration / volume of solution was different - impurities in solution - error in timing - copper falls off (electrode) - copper removed when drying electrode - electrode not dry (when weighed) - voltage / current was different	allow copper at bottom of beaker ignore power supply ignore recorded mass inaccurately	2	$\begin{gathered} \mathrm{AO} 3 \\ 5.4 .3 .4 \end{gathered}$

05.6	$4.75(\mathrm{~g})$	allow values in range 4.7-4.8 (g)	1	AO 2

