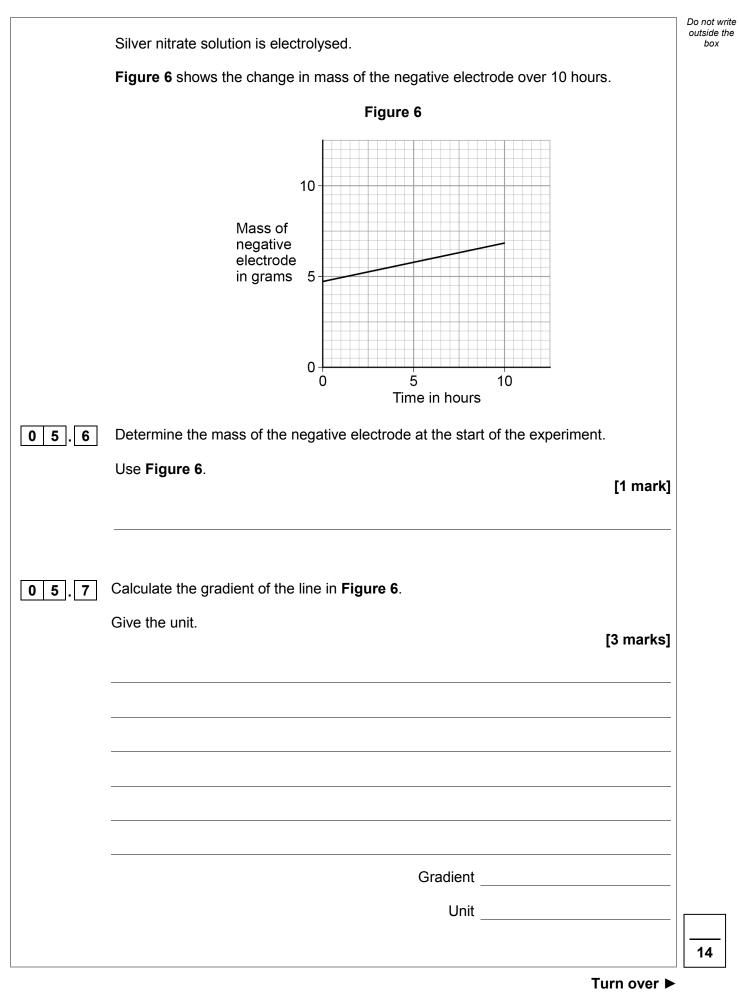

0 5	This question is about electrolysis.	
0 5.1	Some metals are extracted from molten compounds using electrolysis.	
	Why is electrolysis used to extract some metals?	[1 mark]
0 5.2	Aluminium is produced by electrolysis of a molten mixture.	
	What two substances does the molten mixture contain?	
		[2 marks]
	1	
	2	
0 5 3	Copper and chlorine are produced when molten copper chloride is electro	olvsed.
0 5.3	Copper and chlorine are produced when molten copper chloride is electro Complete the half equation for the reaction at each electrode.	olysed.
0 5.3	Copper and chlorine are produced when molten copper chloride is electron Complete the half equation for the reaction at each electrode.	olysed. [2 marks]
0 5.3		
0 5.3	Complete the half equation for the reaction at each electrode. Half equation at negative electrode	
0 5.3	Complete the half equation for the reaction at each electrode.	
0 5.3	Complete the half equation for the reaction at each electrode. Half equation at negative electrode	
0 5.3	Complete the half equation for the reaction at each electrode. Half equation at negative electrode $Cu^{2+} _ \longrightarrow _$ Half equation at positive electrode	
0 5.3	Complete the half equation for the reaction at each electrode. Half equation at negative electrode $Cu^{2+} \ $	
0 5.3	Complete the half equation for the reaction at each electrode. Half equation at negative electrode $Cu^{2+} _ \longrightarrow _$ Half equation at positive electrode	
0 5.3	Complete the half equation for the reaction at each electrode. Half equation at negative electrode $Cu^{2+} _ \longrightarrow _$ Half equation at positive electrode	
05.3	Complete the half equation for the reaction at each electrode. Half equation at negative electrode $Cu^{2+} _ \longrightarrow _$ Half equation at positive electrode	
05.3	Complete the half equation for the reaction at each electrode. Half equation at negative electrode $Cu^{2+} _ \longrightarrow _$ Half equation at positive electrode	
0 5.3	Complete the half equation for the reaction at each electrode. Half equation at negative electrode $Cu^{2+} _ \longrightarrow _$ Half equation at positive electrode	



Turn over ►

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.1	metal is too reactive to be extracted using carbon or metal reacts with carbon	allow metal is more reactive than carbon	1	AO1 5.4.3.3

05.2		either order		AO1
	aluminium oxide	ignore bauxite or aluminium ore	1	5.4.3.3
	cryolite		1	

05.3	negative electrode: $Cu^{2^+} + 2e^- \rightarrow Cu$	allow multiples	1	AO2 5.4.3.2 5.4.3.5
	positive electrode: $2 \text{ Cl}^- \rightarrow \text{ Cl}_2 + 2 \text{ e}^-$	allow $2 \operatorname{Cl}^2 - 2 \operatorname{e}^2 \rightarrow \operatorname{Cl}_2$	1	

05.4	 any two from: concentration / volume of solution was different impurities in solution error in timing 		2	AO3 5.4.3.4
	 copper falls off (electrode) copper removed when drying electrode electrode not dry (when weighed) voltage / current was different 	allow copper at bottom of beaker ignore power supply ignore recorded mass inaccurately		

				_
05.5		an incorrect answer for one step does not prevent allocation of marks for subsequent steps		AO2 5.4.3.4
	reading of mass at stated time	allow tolerance of ± ½ small square	1	
		eg at 30 minutes value is 5.4 (mg)		
	factor from time to 24 hours	eg 5.4 × 48 (= $\frac{24 \text{ hours}}{30 \text{ minutes}}$)	1	
		allow correct calculation using incorrectly read value for mass at time quoted		
	correct evaluation	eg = 259 (mg)	1	
	alternative approach:			
	calculates the gradient (1)	eg (1.8÷10) = 0.18		
	gradient × time in minutes in 24 hours (1)	eg 0.18 × 24 × 60 or eg 0.18 × 1440		
		allow correct use of incorrectly determined gradient		
	correct evaluation (1)	eg = 259 (mg)		

05.6	4.75 (g)	allow values in range 4.7–4.8 (g)	1	AO2 5.4.3.4
05.7	(working) Y increase and X increase	an answer in the range 0.18– 0.25 scores 2 marks (3 marks with correct unit) allow ecf from question 05.6		AO2 5.4.3.4
	and substitution into $\frac{Y \text{ increase}}{X \text{ increase}}$	$eg = \frac{2.0}{10}$	1	
	correct evaluation (units) g/hour	eg = 0.2 allow g/h or g/hr or g per hour	1	