0	5	Figure 7 shows cavity wall insulation being installed in the wall of a house.

Figure 7

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ Explain how the wall reduces unwanted energy transfers.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 continues on the next page

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{2}$ |
| :--- | :--- | :--- | The cavity insulation was tested.

- The heating inside the house was switched off.
- The temperature inside the house was measured every 20 minutes for 2 hours.

Table 4 shows the results.
Table 4

Time in minutes	Temperature in ${ }^{\circ} \mathbf{C}$
0	25.0
20	20.8
40	17.4
60	14.5
80	12.1
100	10.0
120	8.4

Determine the temperature inside the house after 30 minutes.
\qquad
\qquad
\qquad
\qquad
Temperature $=$ \qquad ${ }^{\circ} \mathrm{C}$

0	5	3

Figure 8

Describe how different energy stores are changed by the boiler.
\qquad
\qquad
\qquad
\qquad

Calculate the power of the boiler.
Write any equation that you use.
\qquad
\qquad
\qquad
Power = \qquad W

Turn over for the next question

Question	Answers	Extra information	Mark	AO/ Spec. Ref.

05.1	the wall has two / three layers cavity wall insulation / brick / block has a low thermal conductivity so less energy is transferred by conduction	allow the wall is thick allow rate of energy transfer is lower ignore any reference to convection and / or radiation		$\begin{gathered} \text { AO1 } \\ \text { 6.1.2.1 } \end{gathered}$
05.2	$T=17.4+\left(\frac{(20.8-17.4)}{2}\right)$ or $\begin{aligned} & \mathrm{T}=20.8+\left(\frac{(20.8-17.4)}{2}\right) \\ & \mathrm{T}=19.1\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	an answer in the range 18.519.1 scores 2 marks		$\begin{gathered} \mathrm{AO} 3 \\ \text { 6.1.2.1 } \end{gathered}$

$\mathbf{0 5 . 3}$	chemical energy store of the fuel decreases thermal energy store of the water increases thermal energy store of the air / atmosphere increases	allow kinetic energy store of the water particles increases allow kinetic energy store of the air particles increases	1	1
AO1				

05.4		an answer of 25000 scores 4 marks		$\begin{gathered} \mathrm{AO} 2 \\ \text { 6.1.1.4 } \end{gathered}$
	$E=15000000$ (J)		1	
	$\mathrm{t}=600$ (s)		1	
	$p=\frac{15000000}{600}$	allow a correct substitution of incorrectly / not converted values of E and / or t	1	
	$\mathrm{P}=25000$ (W)	allow a correct calculation using incorrectly / not converted values of E and / or t	1	

Total

