| 0 | 6 |
| :--- | :--- | This question is about oxygen $\left(\mathrm{O}_{2}\right)$ and sulfur dioxide $\left(\mathrm{SO}_{2}\right)$.

| $\mathbf{0}$ | 6 |
| :--- | :--- | $\mathbf{1}$ Give the test and result for oxygen gas.

Test
Result \qquad

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{2}$ The reaction between oxygen and sulfur dioxide is at equilibrium. l .

$$
\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Some of the sulfur trioxide $\left(\mathrm{SO}_{3}\right)$ is removed.
Explain what happens to the position of the equilibrium.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{3}$ Sulfur dioxide is an atmospheric pollutant. |
| :--- | :--- | :--- | :--- |

Sulfur dioxide pollution is reduced by reacting calcium oxide with sulfur dioxide to produce calcium sulfite.

$$
\mathrm{CaO}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3}
$$

7.00 g of calcium oxide reacts with an excess of sulfur dioxide.

Relative atomic masses $\left(A_{r}\right): O=16 \quad S=32 \quad C a=40$
Calculate the mass of calcium sulfite produced.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of calcium sulfite produced = \qquad g

Turn over for the next question

| Question | Answers | Extra information | MarkAO /
 Spec. Ref. |
| :--- | :--- | :--- | :--- | :--- |

06.1	glowing splint		1	AO1
	relights		1	5.8 .2 .2

06.2	equilibrium shifts to right-hand side (because) concentration of SO_{3} decreases	allow towards the products allow in favour of the forward reaction this marking point is dependent on first marking point being awarded allow pressure decreases allow to increase the concentration of SO_{3} allow to re-establish equilibrium	1 1	$\begin{gathered} \mathrm{AO} 3 \\ \\ \\ \mathrm{AO} 2 \\ 5.6 .2 .5 \\ 5.6 .2 .7 \end{gathered}$

06.3	$\begin{aligned} & \left(M_{\mathrm{r}} \mathrm{CaO}=\right) 56 \\ & \left(M_{\mathrm{r}} \mathrm{CaSO}_{3}=\right) 120 \\ & \frac{7}{56} \times 120 \\ & =15(.0 \mathrm{~g}) \end{aligned}$	an answer of $15(.0 \mathrm{~g})$ scores 4 marks in all approaches allow a correct calculation using an incorrectly calculated M_{r} alternative approach A $\begin{align*} & \left(M_{\mathrm{r}} \mathrm{CaO}=\right) 56 \tag{1}\\ & \frac{7}{56}=0.125 \text { (moles) } \tag{1}\\ & \left(\text { mass } \mathrm{CaSO}_{3}=\right) 0.125 \times 120 \tag{1}\\ & =15(.0 \mathrm{~g}) \tag{1} \end{align*}$	1 1 1	AO2 5.3.1.2 5.3.2.1 5.3.2.2

Total			8

