0 6	This question is about oxygen (O_2) and sulfur dioxide (SO_2) .		
0 6.1	Give the test and result for oxygen gas.	[2 marks]	
	TestResult		
0 6.2	The reaction between oxygen and sulfur dioxide is at equilibrium. $O_2(g) \ + \ 2SO_2(g) \ \rightleftharpoons \ 2SO_3(g)$ Some of the sulfur trioxide (SO ₃) is removed. Explain what happens to the position of the equilibrium.		
		[2 marks]	

0 6 . 3	Sulfur dioxide is an atmospheric pollutant.		
	Sulfur dioxide pollution is reduced by reacting calcium oxide with sulfur dioxide to produce calcium sulfite. $\text{CaO} \ + \ \text{SO}_2 \ \rightarrow \ \text{CaSO}_3$		
	7.00 g of calcium oxide reacts with an excess of sulfur dioxide.		
Relative atomic masses (A_r): O = 16 S = 32 Ca = 40			
	Calculate the mass of calcium sulfite produced. [4 marks]		
	[4 marks]		
	Mass of calcium sulfite produced = g		

Turn over for the next question

Turn over ▶

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.1	glowing splint		1	AO1 5.8.2.2
	relights		1	5.6.2.2
06.2	equilibrium shifts to right-hand side	allow towards the products allow in favour of the forward reaction	1	AO3
	(because) concentration of SO ₃ decreases	this marking point is dependent on first marking point being awarded	1	AO2 5.6.2.5 5.6.2.7
		allow pressure decreases		
		allow to increase the concentration of SO ₃ allow to re-establish equilibrium		
06.3		an answer of 15(.0 g) scores 4 marks		AO2 5.3.1.2 5.3.2.1
		in all approaches allow a correct calculation using an incorrectly calculated M_r		5.3.2.2
	(<i>M</i> _r CaO =) 56		1	
	(M _r CaSO ₃ =) 120		1	
	$\frac{7}{56} \times 120$		1	
	= 15(.0 g)	alternative approach A	1	
		$(M_{\rm r} {\rm CaO} =) 56$ (1)		
		$\frac{7}{56}$ = 0.125 (moles) (1)		
		(mass CaSO ₃ =) 0.125×120 (1)		
		= 15(.0 g) (1)		

	alternative approach B		
	$(M_{\rm r} {\rm CaO} =) 56$ (1)	
	$\frac{56}{7} = 8 \text{ (factor)} \tag{1}$)	
	$(M_{\rm r} {\rm CaSO_3} =) 120$ (1))	
	$\frac{120}{8} = 15(.0 \text{ g})$ (1))	
	alternative approach C (M _r CaO =) 56	(1)	
	(M _r CaSO ₃ =) 120	(1)	
	$\frac{120}{56}$ = 2.14235714 (factor	·) (1)	
	2.14235714 × 7 = 15(.0 g) (1)	

Total			8
-------	--	--	---