0	6	Lanthanum-140 is a radioactive isotope.		
0	6	A nucleus of lanthanum-140 emits gamma radiation.		
What happens to the mass number and the charge of the nucleus when gamma radiation is emitted?				
		Tick (\checkmark) one box.		
		Mass number	Charge	
		Decreases	Decreases	
		Decreases	Stays the same	
		Stays the same	Decreases	
		Stays the same	Stays the same	
0	6	Why is it difficult to detect gamma radiation?		
				[1 mark]

What happens to the mass number and the charge of the nucleus when gamma radiation is emitted?

Tick (\checkmark) one box.

$\mathbf{0}$	$\mathbf{6} .2$
2	Why is it difficult to detect gamma radiation?

Question 6 continues on the next page

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{3}$	Activity is the rate at which a radioactive source decays.

A teacher measured the count-rate from a sample of lanthanum-140 using a Geiger-Muller (G-M) tube.

Explain why the count rate was less than the activity of the sample of lanthanum-140 [2 marks]

The teacher investigated how the thickness of lead affected the amount of gamma radiation that could pass through it.

Figure 6 shows the apparatus.
Figure 6

$\mathbf{0}$	$\mathbf{6} .4$	Explain why the teacher stood as far away from the apparatus as possible.

\qquad
\qquad
\qquad
\qquad

Table 1 shows the results.
\qquadThickness of Tead in $\mathbf{c m}$
\qquadCount rate in counts per second
0.5
1.0
1.5
2.0
2.5

| 0 | $\mathbf{6}$. | $\mathbf{5}$ The teacher concluded that the count rate was not inversely proportional to the |
| :--- | :--- | :--- | thickness of lead.

Explain why the teacher was correct.
Use the data in Table 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	6
Lanthanum-140 can also emit beta radiation and change into cerium.		

Complete the equation showing the decay of lanthanum (La) 140 into cerium (Ce).
[2 marks]

There are other isotopes of cerium which are radioactive.
Different isotopes of cerium have different half-lives.
The half-life of an isotope can be found by studying how the number of atoms changes over time.

Figure 7 shows how the number of atoms of cerium-148 in a 120 g sample changes over time.

Figure 7

Number of atoms of cerium-148 $\times 10^{23}$

| $\mathbf{0}$ | $\mathbf{6} . \mathrm{7}$ | Determine the ratio of the number of cerium atoms in the sample when it was |
| :--- | :--- | :--- | 100 seconds old compared with when the sample was 350 seconds old.

Use data from Figure 7.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Ratio $=$ \qquad

| 0 | 6 | 8 |
| :--- | :--- | :--- | Use Figure 7.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Activity $=$ \qquad Bq

END OF QUESTIONS

Question	Answers	Extra information	Mark	AO / Spec. Ref.	ID

$\mathbf{0 6 . 1}$	mass number stays the same, charge stays the same		1	AO1.1	A

$\mathbf{0 6 . 2}$	gamma radiation is only weakly ionising or most gamma radiation will pass through any detector	allow gamma radiation is very penetrating	1	AO1.1	E

06.3	any two from - the radiation spreads out in all directions - only some of the radiation goes into the G-M tube - only some of the radiation passing into the GM tube is detected	allow 2 marks for only some of the radiation passing into the GM tube is detected because gamma is weakly ionising	2	AO1. 1 6.4.2.4	E

06.4	to reduce the amount of radiation received because radiation increases the risk of cancer or (genetic) mutation	allow to reduce irradiation (of the teacher)	1	AO1.1	E
				6.4.2.1	
		allow causes cancer or (genetic) mutation	1	WS 1.4	
		ignore references to contamination			

$\mathbf{0 6 . 5}$	a calculation of the product of thickness and count rate a second calculation of the product of thickness and count rate a comparison of the calculated values and a recognition that they are different OR	examples of calculations $0.5 \times 110=55$ $1.0 \times 60=60$ $1.5 \times 33=50$ $2.0 \times 18=36$ $2.5 \times 10=25$	AO3.1b	E
	A calculation of half the count rate (1)	e.g. $\frac{110}{2}=55$ A comparison with the count rate for double that thickness (1)	the first two marks may be scored for a count rate divided by 3, 4 or 5 compared with the corresponding count rate for 3, 4 or 5 times the thickness	1

06.7	half-life $=50$ seconds 250 seconds difference in age $=$ 5 half lives ratio $=\left(\frac{1}{2}\right)^{5}$ or ratio $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ ratio $=\frac{1}{32}$ or ratio $=1: 32$	an answer of $\frac{1}{32}$ or equivalent scores 4 marks this may be indicated on Figure 7 allow 100 seconds $=2$ half lives and 350 seconds $=7$ half lives allow this mark if they have halved $1.25\left(\times 10^{23}\right)$ five times to get $0.0390625\left(\times 10^{23}\right)$ for example $1.25\left(\times 10^{23}\right) \rightarrow$ $0.625\left(\times 10^{23}\right) \rightarrow 0.3125(\times$ $\left.10^{23}\right) \rightarrow 0.15625\left(\times 10^{23}\right) \rightarrow$ $0.078125\left(\times 10^{23}\right) \rightarrow 0.0390625(\times$ 10^{23}) allow ratio $=0.031$ allow 32:1 or 32	1 1 1 1 1	A03.1a 6.4.2.3	E
06.8	tangent drawn on graph $\begin{aligned} & \text { use of gradient }=\frac{(\Delta \text { no. of atoms })}{\Delta \text { time }} \\ & \text { gradient }=5.3\left(\times 10^{21}\right)(\mathrm{Bq}) \end{aligned}$	do not allow a line drawn that crosses the graph line values must be taken from their tangent drawn at 20 seconds allow gradient = $0.053\left(\times 10^{23}\right)(\mathrm{Bq})$ allow a range between $4.7\left(\times 10^{21}\right)(\mathrm{Bq})$ and $5.9\left(\times 10^{21}\right)(\mathrm{Bq})$	1 1 1	$\begin{aligned} & \mathrm{AO} 2.2 \\ & \text { 6.4.2.1 } \end{aligned}$	E

Total

