0	6	Figure 9 shows five different metal samples.

Figure 9

| 0 | 6 | 1 |
| :--- | :--- | :--- | A student placed a magnet close to each metal sample.

Describe what happened.
[2 marks]
\qquad
\qquad
\qquad
\qquad

Figure 10 shows a paper clip being attracted to a permanent magnet.
Figure 10

| $\mathbf{0}$ | 6 |
| :--- | :--- | $\mathbf{2}$ The paper clip in Figure 10 is not a permanent magnet.

Explain what would happen if the paper clip was removed and brought close to the south pole of the permanent magnet.
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{6} .3$	$\begin{array}{l}\text { Write down the equation that links gravitational field strength }(g) \text {, mass }(m) \text { and } \\ \text { weight }(W)\end{array}$

\qquad

| 0 | 6 | .4 |
| :--- | :--- | :--- | The student added more paperclips to one end of the magnet.

The maximum number of paperclips the magnet could hold was 20
Each paper clip had a mass of 1.0 g
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the maximum force the magnet can exert.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Force $=$ \qquad weight (W).

Question	Answers	Extra information	Mark	AO / Spec. Ref.

$\mathbf{0 6 . 1}$	iron and steel will be attracted (to the magnet) aluminium, copper and tin will not be attracted (to the magnet)	AO1 allow 1 mark is one metal is in the incorrect list, but all the other four are correct if no other mark awarded allow iron and steel are magnetic for 1 mark	1	6.7 .1 .1

$\mathbf{0 6 . 2}$	the paperclip would still be attracted to the magnet because of induced magnetism	allow the paper clip becomes an induced magnet allow because the paper clip is a temporary magnet allow there is a magnetic field at the south pole	1	AO.7.1.1

\begin{tabular}{|c|c|c|c|c|}
\hline 06.3 \& \begin{tabular}{l}
weight \(=\) mass \(\times\) gravitational field strength \\
or
\[
W=m g
\]
\end{tabular} \& do not accept gravity for gravitational field strength \& 1 \& \[
\begin{gathered}
\text { AO1 } \\
\text { 6.5.1.3 }
\end{gathered}
\] \\
\hline 06.4 \& \[
\begin{aligned}
\& 1.0 \mathrm{~g}=0.0010 \mathrm{~kg} \\
\& \text { weight of } 1 \text { paperclip }=0.0010 \times \\
\& 9.8 \\
\& \text { Force }=0.0098 \times 20=0.196(\mathrm{~N})
\end{aligned}
\] \& \begin{tabular}{l}
allow 0.001 (kg) \\
allow 0.0098 (N) \\
allow correct substitution using incorrectly/not converted value of mass of paperclip \\
allow correct calculation using incorrectly/not converted value of mass of paperclip
\end{tabular} \& 1
1

1 \& $$
\begin{gathered}
\mathrm{AO} 2 \\
6.5 .1 .3
\end{gathered}
$$ \\

\hline
\end{tabular}

