| $\mathbf{0}$ | $\mathbf{6}$ |
| :--- | :--- | :--- |\quad The speed limit on many roads in towns is $13.5 \mathrm{~m} / \mathrm{s}$

Outside schools this speed limit is often reduced by one-third.

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{1}$ Calculate the reduced speed limit.

\qquad
\qquad
\qquad
\qquad
Reduced speed limit $=$ \qquad m / s

0	6.2	A reduced speed limit may reduce air pollution.

Explain one other advantage of a reduced speed limit.

Reduced speed m/s
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

0	6	3	Figure 11 shows a car being driven at a constant speed past a speed camera.

Figure 11

The camera recorded two images of the car 0.70 s apart.
The car travelled 14 m between the two images being taken.
The maximum deceleration of the car is $6.25 \mathrm{~m} / \mathrm{s}^{2}$

Calculate the minimum braking distance for the car at the speed it passed the speed camera.
\qquad
Minimum braking distance $=$ \qquad m

0	6	4	Figure 12 shows a delivery van full of packages.

Figure 12

The driver delivers all the packages.
The empty van has a shorter stopping distance than the full van when driven at the same speed.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

Question	Answers	Extra information	Mark	AO / Spec. Ref.

$\mathbf{0 6 . 1}$	$13.5 \times \frac{2}{3}$		1	AO2
	$9.0(\mathrm{~m} / \mathrm{s})$	allow $9(\mathrm{~m} / \mathrm{s})$		
	OR			
	$13.5 \times \frac{1}{3}=4.5(1)$			
$13.5-4.5=9.0(\mathrm{~m} / \mathrm{s})(1)$				

$\mathbf{0 6 . 2}$	reduced speed reduces stopping distance	allow reduces thinking / braking distance	1	AO1
	means less chance of collision			
	OR		1	6.5 .4 .3 .2
	(he car will have less kinetic energy (1) so less likely to cause injury in the event of a collision (1)			

06.3	$14=v \times 0.70$		1	AO2
	$v=\frac{14}{0.70}$		1	6.5 .4 .1 .5
$v=20(\mathrm{~m} / \mathrm{s})$		1		
	$0^{2}-20^{2}=2 \times(-6.25) \times \mathrm{s}$			
$\mathrm{s}=\frac{20^{2}}{(2 \times 6.25)}$				
$\mathrm{s}=32(\mathrm{~m})$	ignore minus signs throughout	1	1	

