Figure 8 shows an image of a small section of DNA.
Figure 9 shows the structure of a small section of DNA.

Figure 8

Figure 9

0	7	1	What is Part B?

\qquad
\qquad

| 0 | 7 | 2 |
| :--- | :--- | :--- | In Figure 8 the structure of DNA shows four different bases.

There are four different bases and they always pair up in the same pairs.
Which bases pair up together?
\qquad

Question 7 continues on the next page

Syndrome H is an inherited condition.
People with syndrome H do not produce the enzyme IDUA.

Figure 9 shows part of the gene coding for the enzyme IDUA.

Figure 9

Strand \mathbf{K} shows a mutation in the DNA which has caused syndrome H .

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ The enzyme IDUA helps to break down a carbohydrate in the human body. |
| :--- | :--- | :--- | :--- | The enzyme IDUA produced from Strand \mathbf{K} will not work.

Explain how the mutation could cause the enzyme not to work.
\qquad

0	7	4
4	A recessive allele causes syndrome H.	

A heterozygous woman and a homozygous recessive man want to have a child.

Draw a Punnett square diagram to determine the probability of the child having syndrome H .

Identify any children with syndrome H .

Use the following symbols:
A = dominant allele
$\mathbf{a}=$ recessive allele
\qquad

Question 7

Question	Answers	Extra information	Mark	AO I Spec. Ref.
07.1	phosphate	allow $\mathrm{PO}_{4}{ }^{3-}$ do not allow P	1	$\begin{aligned} & \text { AO1/1 } \\ & 4.6 .1 .5 \end{aligned}$
07.2	A / adenine and T/ thymine and C /cytosine and G / guanine	do not allow U / uracil	1	$\begin{aligned} & \text { AO1/1 } \\ & \text { 4.6.1.5 } \end{aligned}$
07.3	(mutation) changes from C to T DNA code or there is a change in the three bases / triplet from CAG to TAG (mutation) changes the amino acid (this could) change the protein (so it) forms a different shape / changed active site (therefore) the enzyme no longer fits the substrate / carbohydrate	accept different tertiary structure	1 1 1 1 1	AO2/1 4.6.1.5 AO1/1 4.6.1.5 AO1/1 4.6.1.5 AO1/1 4.6.1.5 AO1/1 4.6.1.5

Question 7 continues on the next page

Question 7 continued

Question	Answers	Extra information	Mark	AO / Ref. Spec. Re

07.4	mother / woman's gametes correct: A a		1	$\begin{aligned} & \mathrm{AO} 2 / 2 \\ & 4.6 .1 .6 \end{aligned}$
	father / man's gametes correct: a a		1	$\begin{aligned} & \mathrm{AO} 2 / 2 \\ & 4.6 .1 .6 \end{aligned}$
	correct derivation of offspring	ecf	1	$\begin{aligned} & \mathrm{AO} 2 / 2 \\ & 4.6 .1 .6 \end{aligned}$
	identification of child with syndrome H or genotype aa		1	$\begin{aligned} & \text { AO2/2 } \\ & \text { 4.6.1.6 } \end{aligned}$
	0.5	ecf allow 50\% / 1/2 / 1 in 2 / 1:1 do not accept 1:2	1	$\begin{gathered} \text { AO3/2b } \\ 4.6 .1 .6 \end{gathered}$

Total

