$\mathbf{0}$	$\mathbf{7}$	Ragwort is a weed that grows on farmland.

Ragwort is poisonous to horses.

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{1}$ | Plan an investigation to estimate the size of a population of ragwort growing in a |
| :--- | :--- | :--- | :--- | rectangular field on a farm.

\qquad

Question 7 continues on the next page

The herbicide glyphosate will kill ragwort and other weeds.
Scientists use bacteria for the genetic engineering of crop plants to make the crops resistant to glyphosate.

Figure 8 shows the growth of a culture of the bacteria in a solution of nutrients at $25^{\circ} \mathrm{C}$

Figure 8

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ Why did the rate of reproduction increase between 2 hours and 7 hours? |
| :--- | :--- | :--- | :--- |

\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$	After 12 hours, the rate of reproduction decreased.

Suggest three ways the scientists could maintain a high rate of reproduction in the bacterial culture.

1
\qquad
2 \qquad
\qquad
3
\qquad

| 0 | $\mathbf{7}$. | $\mathbf{4}$ |
| :--- | :--- | :--- | The rate of reproduction of the bacteria is fastest at 7 hours.

How many times faster is the rate of reproduction at 7 hours than the rate at 12 hours?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Rate at 7 hours is \qquad times faster.

Question 7 continues on the next page

$\mathbf{0}$	$\mathbf{7} .5$	5
$\mathbf{5}$	Scientists transferred a gene for resistance to the herbicide glyphosate into	

The genetically-modified (GM) bacteria can then transfer the glyphosate-resistance gene to a crop plant.

Explain the advantage of making crop plants resistant to glyphosate.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question	Answers	Extra information	Mark	AO I Spec. Ref.
07.1	Level 2: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.		3-4	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \end{aligned}$
	Level 1: The method would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.		1-2	
	No relevant content		0	
	Indicative content - use of quadrat - (quadrat) of given area / dimensions - eg $0.25 \mathrm{~m}^{2}$ or $1 \mathrm{~m} \times 1 \mathrm{~m}$ - quadrats are placed randomly - method of obtaining randomness - eg random coordinates from a calculator or throw over shoulder or throw with eyes closed - suitable number of quadrats (10 or more or a large number) - count number of plants (in each quadrat) - calculation of mean per quadrat or per unit area - determination of area of field (length \times width) - population $=$ mean per $\mathrm{m}^{2} \times$ area of field			4.7.2.1
07.2	more bacteria so more divisions / reproduction (per unit time)		1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.1.1.6 } \end{gathered}$
07.3	any three from: - add (more) sugar - add (more) amino acids / protein - add (more) oxygen - increase temperature - remove toxins / waste or maintain pH - stir the culture	if neither point given, allow add (more) nutrients allow in range $26^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ allow maintain optimum temperature if no other mark awarded allow 1 mark for add more food	3	AO3 4.1.1.6 4.4.2.3 4.7.2.3 4.7.4.3 4.7.5.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.

07.4	tangent drawn to the curve at 12 hours calculation of rate at 7 hours $\frac{\Delta y}{\Delta x}$ calculation of rate at 12 hours $\frac{\Delta y}{\Delta x}$ 3.3	an answer in the range of 2.9 to 3.4 scores 4 marks an answer in the range of 2.08 to 3.77 scores 3 marks do not accept if there is an incorrect tangent at 7 hours allow an answer that correctly rounds to a value in range 10.0 to 11.7 allow an answer that correctly rounds to a value in range 3.1 to 4.8 allow in range 2.9 to 3.4 if both rates are in the correct ranges	1 1 1 1 1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.1.1.6 } \\ \text { 4.6.2.4 } \end{gathered}$

07.5	can use the glyphosate / weed killer to kill weeds but not kill / affect crop	allow only kills weeds	1	AO1 (so) less competition for light / water / minerals / ions
allow less competition for nutrients ignore food / carbon dioxide / space allow crops grow better / well	1	1	4.7.1.3	
	(so) crops have high(er) yield	AO1		
Total			$\mathbf{1 5}$	

