0	7	A student clamped a wire between the poles of a permanent magnet.

The student investigated how the force on the wire varied with the current in the wire.
Figure 13 shows the equipment used.
Figure 13

The top pan balance was used to determine the force on the wire.

$\mathbf{0}$	$\mathbf{7} .1$	$\mathbf{1}$

Explain why the increased reading showed that there was an upward force on the wire.
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{2}$ Table 3 shows the readings on the top pan balance with the switch open and with the

Table 3

Switch	Mass in grams
Open	252.3
Closed	254.8

Explain how the values in Table 3 can be used to determine the size of the force on the wire.
\qquad
\qquad
\qquad

Question 7 continues on the next page

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{3}$ The student varied the current in the wire and calculated the force acting on the wire.

Figure 14 shows the results.
Figure 14

The length of the wire in the magnetic field was 0.125 m
Determine the magnetic flux density.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Magnetic flux density $=$ \qquad

Question	Answers	Extra information	Mark	AO / Spec. Ref.

$\mathbf{0 7 . 1}$	the downward force on the balance increased	allow when there is a current in the wire there is a magnetic field around the wire (which causes a magnetic force)	1	AO3 6.7 .2 .2
	therefore the wire must experience an equal and opposite force (which is upwards)	6.5.4.2.3		
$\mathbf{0 7 . 2}$	calculate the difference between the two mass readings convert to kg and multiply by gravitational field strength	allow $(254.8 / 1000) \times 9.8=$ $0.02375(\mathrm{~N})$	1	AO1

$\mathbf{0 7 . 3}$	gradient $=\frac{(0.0210-0.0)}{(0.70-0.02)}$		1	AO3		
	gradient $=0.031$	allow answer correctly given to any number of significant figures allow correct substitution using correctly calculated value given to any number of significant figures allow answer correctly given to any number of significant figures any rounding must be correct for subsequent marks to be awarded.	1	1	AO3	AO2
:---:						

Total

