| 0 | $\mathbf{7}$ | Kangaroos are large animals that travel by jumping. |
| :--- | :--- | :--- |

Figure 8 shows a kangaroo.
Figure 8


Each leg of a kangaroo has a tendon connected to a muscle. Each tendon can be modelled as a spring.

When a jumping kangaroo lands on the ground, the tendons stretch.

| 0 | $\mathbf{7}$ | $\mathbf{1}$ | Figure 9 shows a sketch graph of how the maximum tendon length during a jump |
| :--- | :--- | :--- | :--- | changes with the speed of the kangaroo.

Figure 9


Explain why a kangaroo can jump higher as its speed increases.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Question 7 continues on the next page

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ A kangaroo has a maximum gravitational potential energy during one jump of 770 J |
| :--- | :--- | :--- | :--- |

When the kangaroo lands on the ground $14 \%$ of the maximum gravitational potential energy is transferred to elastic potential energy in one tendon.

The tendon has an unstretched length of 35.0 cm
When the kangaroo lands on the ground the tendon stretches to a length of 42.0 cm

Calculate the spring constant of the tendon.
[5
$\qquad$
Spring constant $=$ $\qquad$ $\mathrm{N} / \mathrm{m}$

| Question | Answers | Extra information | Mark | AO / <br> Spec. Ref. |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 7 . 1}$ | the (maximum tendon) <br> extension increases (as speed <br> increases) <br> so the elastic potential energy <br> increases <br> which is transferred to <br> gravitational potential energy | allow the tendons stretch more <br> (as speed increases) <br> allow so the (elastic) force | 1 | AO3 |


| 07.2 | $E=770 \times 0.14$ | allow $\mathrm{E}=107.8$ (J) | 1 | $\begin{gathered} \mathrm{AO} 2 \\ \text { 6.1.1.2 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | extension $=0.070 \mathrm{~m}$ |  | 1 |  |
|  | $107.8=0.5 \times \mathrm{k} \times 0.070^{2}$ | this mark may be awarded if extension is incorrectly/not converted and/or if the efficiency equation has not been applied | 1 |  |
|  | $\mathrm{k}=2 \times \frac{107.8}{0.070^{2}}$ | this mark may be awarded if extension is incorrectly/not converted and/or if the efficiency equation has not been applied | 1 |  |
|  | $\mathrm{k}=44000(\mathrm{~N} / \mathrm{m})$ | this mark may be awarded if extension is incorrectly/not converted this mark may not be awarded if the efficiency equation has not been applied | 1 |  |


| Total |  |  | 8 |
| :--- | :--- | :--- | :--- |

