Figure 6 shows photographs of some animal cells at different stages during the cell cycle.

Figure 6

| 0 | 9 | 1 |
| :--- | :--- | :--- | Which photograph in Figure 6 shows a cell that is not going through mitosis? [1 mark] Tick one box

A
B
C

\qquad
\qquad
\qquad \longrightarrow
\qquad

Question 9 continues on the next page

A student wanted to find out more about the cell cycle.
The student made a slide of an onion root tip.
She counted the number of cells in each stage of the cell cycle in one field of view.
Table 4 shows the results.
Table 4

\left.| | Stages in the cell cycle | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Non-dividing cells | Stage 1 | Stage 2 | Stage 3 | Stage 4 |
| Total | | | | | |
| Number of cells | 20 | 9 | 4 | 2 | 1 |$\right] 36$

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{3}$

Which stage in Table 4 is the fastest in the cell cycle?
Give a reason for your answer.

Stage
Reason

0	$\mathbf{9}$	4

Calculate the length of time Stage 2 lasts in a typical cell.
Give your answer to 2 significant figures.
\qquad \longrightarrow

Time in Stage 2 =
minutes

Question 9 continues on the next page

Bacteria such as Escherichia coli undergo cell division similar to mitosis.
Figure 7 shows a growth curve for E. coli grown in a nutrient broth.

Figure 7

$\mathbf{0}$	$\mathbf{9} .5$	$\mathbf{5}$ What type of cell division causes the change in number of E. coli cells at \mathbf{P} ?

\qquad

0	9	6	Suggest why the number of cells levels out at \mathbf{Q}.

\qquad
\qquad
\qquad \longrightarrow \longrightarrow

Turn over for the next question

Question 9

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.1	C		1	$\mathrm{AO} 2 / 1$
				4.1 .2 .2

$\mathbf{0 9 . 2}$	cytoplasm and cell membrane dividing	accept cytokinesis for 1 mark	1	AO2/1 4.1 .2 .2
	to form two identical daughter cells		1	AO2/1 4.1 .2 .2

$\mathbf{0 9 . 3}$	stage 4		1	AO3/1a 4.1 .2 .2
	only one cell seen in this stage		1	AO2/2 4.1 .2 .2

09.4	$(4 / 36) \times 16 \times 60$		1	AO2/2
	$107 / 106.7$		1	AO2/2
			4.1 .2 .2	
	110 (minutes)	allow 110 (minutes) with no	1	AO2/2
		working shown for 3 marks		4.1 .2 .2

09.5	binary fission	do not accept mitosis	1	AO1/1 4.1 .1 .6

09.6	shortage of nutrients / oxygen		1	AO3/1a 4.1 .1 .6
	so cells die or death rate $=$ rate of cell division		1	AO3/1a 4.1 .1 .6

Total

